基于改进YOLVOv5s的 X 射线图像粘接 缺陷实时检测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

山西省省筹资金资助回国留学人员科研项目(2022-145,20210038)资助


Real-time detection of adhesive defects in X-ray images based on improved YOLVOv5s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了兼顾火箭弹非金属粘贴结构缺陷的检测速度和准确率,提出一种基于改进YOLOv5s的 X 射线图像火箭弹缺陷 检测算法。该算法在YOLOv5s的基础上使用深度分离卷积重新设计特征提取网络中 Bottleneck 结构,以此改进C3 模块,通 过减少模型参数数量,提高运行速度。然后分别在特征提取网络的Focus 结构后和Neck 层的卷积和上采样之前加入卷积模 块的注意力机制模块(CBAM), 用来提高模型对有效特征提取,使模型更加关注小目标,力图保持运行速度的同时提高检测精 度。实验结果表明,该算法在自制的火箭弹粘贴缺陷数据集上测试的平均精度均值(mAP) 达到86.40%,比原始模型提高 6.44%,帧率为32 fps; 相比SSD、YOLOX-Tiny 网络算法,该模型在检测速度和检测精度上有着出色的综合表现,能够针对火 箭弹非金属粘接结构缺陷进行高效的检测。

    Abstract:

    In order to give consideration to the detection speed and accuracy of the defects of the nonmetallic adhesive structure of the rocket,a rocket defect detection algorithm based on the improved YOLOv5s X-ray image is proposed. Based on YOLOv5s,the algorithm uses deep separation convolution to redesign the Bottleneck structure in the feature extraction network,so as to improve the C3 module and improve the running speed by reducing the number of model pa- rameters.Then the CBAM module is added after the Focus structure of the feature extraction network and before the convolution and upsampling of the Neck layer to improve the effective feature extraction of the model,make the model pay more attention to small targets,and try to maintain the running speed while improving the detection accuracy.The experimental results show that the mAP of the algorithm tested on the homemade rocket paste defect data set reaches 86.40%,which is 6.44%higher than the original model,and the FPS is 32 frames/second;Compared with SSD and YOLOX-Tiny network model,this model has excellent comprehensive performance in detection speed and detection ac- curacy,and can effectively detect the defects of non-metallic bonding structure of rocket.

    参考文献
    相似文献
    引证文献
引用本文

赵子文,金 永,陈友兴,吴其洲,王召巴.基于改进YOLVOv5s的 X 射线图像粘接 缺陷实时检测[J].国外电子测量技术,2023,42(4):181-186

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-29
  • 出版日期:
文章二维码