基于麻雀搜索算法改进的YOLOv7-ECA-SSA 模型的车辆检测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

陕西省科技厅项目(2023-YBGY-031)资助


Vehicle detection based on improved YOLOv7-ECA-SSA model with sparrow search algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决复杂背景下小目标车辆检测存在的误检、漏检等现象,创新性提出一种改进 YOLOv7 网络的目标检测算法。 首先,为解决小目标车辆存在次要信息干扰问题,将高效通道注意力(ECA) 机制融于 YOLOv7 模型的主干网络特征层,通过 自适应学习来增强目标区域信息权重占比,抑制无关信息;其次,为解决神经网络检测模型训练的超参数随机经验设定性问 题,将麻雀搜索算法(SSA) 对检测模型训练超参数进行优化,通过内外双循环迭代方式,快速收敛出全局最优学习率,进而得 到最优组的权重信息,最终提高小目标车辆检测精度。实验结果表明,基于结构优化、超参数优化的 YOLOv7-ECA-SSA 检测 模型在 BDD100K数据集上的检测精度为79.01%,比原始模型提高了5.38%,具备更好的小目标车辆检测性能。

    Abstract:

    To solve the small target under complex background of vehicle detection error detection,leak phenomenon, such as innovative put forward an improved YOLOv7 network target detection algorithm.Firstly,in order to solve the problem of small target vehicle secondary information interference,the ECA attention mechanism was integrated into the main network feature layer of YOLOv7 model,and the weight proportion of target area information was enhanced and irrelevant information was suppressed through adaptive learning.Secondly,in order to solve the qualitative problem of hyperparameter stochastic experience of neural network detection model training,the sparrow search algorithm was used to optimize the hyperparameter of detection model training,and the global optimal learning rate was quickly converged through internal and external double loop iteration,and then the weight information of the optimal group was obtained, and finally the detection accuracy of small target vehicles was improved.The experimental results show that the detection accuracy of YOLOv7-ECA-SSA detection model based on structure optimization and hyperparameter optimization is 79.01%on BDD100K data set,5.38%higher than that of the original model,and has better detection performance of small target vehicles.

    参考文献
    相似文献
    引证文献
引用本文

陈 红,张 乐.基于麻雀搜索算法改进的YOLOv7-ECA-SSA 模型的车辆检测[J].国外电子测量技术,2024,43(2):158-164

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-29
  • 出版日期:
文章二维码
×
《国外电子测量技术》
财务封账不开票通知