基于改进学生心理优化算法的无人机路径规划
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP18

基金项目:


UAV path planning based on improved student mental optimization algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对标准学生心理优化算法(student psychology based optimization,SPBO)在解决无人机路径规划中遇到的搜索能 力欠缺、陷入局部最优等问题,提出一种改进学生心理优化算法的无人机三维路径规划。首先,为增强无人机的局部搜索能 力,引入人为划分小组和分层学习方式,对学生心理优化算法中的学生群体进行更新处理。其次,为解决无人机陷入局部最 优问题,借鉴蜜獾算法(honey badger algorithm,HBA)中的挖掘搜索机制来跳出局部搜索。最后,通过 MATLAB仿真实验 结果表明,改进学生心理优化算法(ISPBO)的平均路径长度减少了0.1275 km、代价平均值降低了1.94%和标准差减少了84.07%,验证了ISPBO具有更强的寻优能力和更好的稳定性。

    Abstract:

    Aiming at the problems of lack of search ability and falling into local optimization encountered by the standard student psychology based optimization(SPBO)algorithm in solving the UAV path planning,a kind of three-dimensional path planning for UAVs with improved student psychology optimization algorithm is proposed.First,in order to enhance the local search ability of the UAV,artificial group division and hierarchical learning are introduced to update the students in the student mental optimization algorithm.Secondly,in order to solve the problem of UAV falling into local optimization,the mining search mechanism in honey badger algorithm(HBA)is borrowed to jump out of local search. Finally,the results of MATLAB simulation experiments show that the average path length of the improved student psychology based optimization algorithm(ISPBO)is reduced by 0.1725 km,the average cost is reduced by 1.94%and the standard deviation is reduced by 84.07%,which verifies that ISPBO has stronger optimization ability and better stability.

    参考文献
    相似文献
    引证文献
引用本文

李汶键,鲁旭涛,万炎成,郭晓宇.基于改进学生心理优化算法的无人机路径规划[J].国外电子测量技术,2024,43(4):78-84

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-20
  • 出版日期:
文章二维码
×
《国外电子测量技术》
财务封账不开票通知