基于跨模态特征融合的RGB-D 显著性目标检测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN2

基金项目:


RGB-D salient object detection based on cross-modal feature fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    RGB-D显著性目标检测因其有效性和易于捕捉深度线索而受到越来越多的关注。现有的工作通常侧重于通过各种 融合策略学习共享表示,少有方法明确考虑如何维持RGB 和深度的模态特征。提出了一种跨模态特征融合网络,该网络维 持RGB-D显著目标检测的RGB 和深度的模态,通过探索共享信息以及RGB 和深度模态的特性来提高显著检测性能。具体 来说,采用RGB 模态、深度模态网络和一个共享学习网络来生成RGB 和深度模态显著性预测图以及共享显著性预测图。提 出了一种跨模态特征融合模块,用于融合共享学习网络中的跨模态特征,然后将这些特征传播到下一层以整合跨层次信息。 此外,提出了一种多模态特征聚合模块,将每个单独解码器的模态特定特征整合到共享解码器中,这可以提供丰富的互补多 模态信息来提高显著性检测性能。最后,使用跳转连接来组合编码器和解码器层之间的分层特征。通过在4个基准数据集 上与7种先进方法进行的实验表明,方法优于其他最先进的方法。

    Abstract:

    RGB-D saliency object detection has received increasing attention due to its effectiveness and ease of capturing depth cues.Existing work usually focuses on learning shared representations through various fusion strategies,and few approaches explicitly consider how to maintain the modal features of RGB and depth.In this paper,we propose a cross- modal fusion network that maintains the modalities of RGB and depth for RGB-D salient object detection,and improves the salient detection performance by exploring the shared information as well as the properties of RGB and depth modalities.Specifically,an RGB modal,a deep modal network,and a shared learning network are used to generateRGB and deep modal saliency prediction maps as well as shared saliency prediction maps.A cross-modal feature integrate module is proposed to fuse cross-modal features in the shared learning network,which are then propagated to the next layer for integrating cross level information.Besides,we propose a multi-modal feature aggregation module to integrate the modality specific features from each individual decoder into the shared decoder,which can provide rich complementary multi-modal information to boost the saliency detection performance.Further,a skip connection is used to combine hierarchical features between the encoder and decoder layers.Experiments with ten state-of-the-art methods on four benchmark datasets show that the method in this paper outperforms other state-of-the-art methods.

    参考文献
    相似文献
    引证文献
引用本文

李 可 新,何 丽,刘 哲 凝,钟 润 豪.基于跨模态特征融合的RGB-D 显著性目标检测[J].国外电子测量技术,2024,43(6):59-67

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-09
  • 出版日期:
文章二维码
×
《国外电子测量技术》
财务封账不开票通知