摘要:为了解决遥感图像中小目标的误检 、漏检难 题 , 提 出 了 一 种 改 进 的 YOLOv7-tiny算 法 。首 先 , 引 入 高 效 多 尺 度 注 意 力模块(efficientmulti-scale attention, EMA) ,基于此设计了多尺度特征提取模块 ELAN-EMA,这大大增强了骨干网 络 对 于 多尺度特征的提取能力 ;其次 ,在 特 征 金 字 塔 网 络(feature pyramid network, FPN) 中 引 入 内 容 感 知 特 征 重 组(content-aware reassembly offeatures, CARAFE) 优化最近邻上采样方法 ,设计了 FPN-CARAFE结构 ,扩大了感受野 ,从而能够获取小 目标 更多的细节信息和丰富的语义信息 ;最后 ,采用归一化距离损失函数(normalized wasserstein distance, NWD) 优化 CIoU 损失 函数 ,设计了 NWD-CIoU损失函数 , 降低了 CIoU对小目标位置偏 移 的 敏 感 性 , 能 够 更 好 地 提 升 小 目 标 的 检 测 效 果 。在 公 开 的遥感数据集 RSOD和 NWPU VHR-10上进行的实验表明 ,与基准模型相比 ,在计算量和参数量略增长的情况下 ,改进的模 型在平均精度均值(mAP) mAP@0.5 上分别提升了 3.6%和 1.8% ,有 效 地 提 高 了 遥 感 图 像 中 小 目 标 的 检 测 精 度 ,综 合 性 能 优于其他算法 ,满足部署在遥感检测系统上的要求 。