多策略融合的斑马优化算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP301.6

基金项目:


Multi-strategy combined zebra optimization algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对斑马优化算法易陷入局部最优和鲁棒性差的问题,提出了一种多策略融合的斑马优化算法。首先采用基于Lo- gistics 混沌的收敛因子作为步长控制因子,平衡了算法全局探勘与局部开发能力,提高了算法的寻优精度;其次采用位置扰动 策略,避免了迭代过程种群多样性的减少,增强了算法跳出局部最优的能力;最后采用记忆更新策略,降低了位置更新策略的 盲目性。利用14个标准测试函数,在收敛精度、收敛速度、统计检验3个方面对改进后算法的优良性进行实验检验。实验结 果表明,改进策略有效地提升了斑马优化算法寻优精度与跳出局部最优的能力。在工程优化问题上进一步验证了算法处理 实际优化问题的有效性与实用性。

    Abstract:

    To address the issue of zebra optimization algorithm being prone to local optimum and poor robustness,a Multi-strategy combined zebra optimization algorithm is proposed.Utilizing a convergence factor based on Logistics chaos as the step control parameter balances the algorithm's global exploration and local exploitation capabilities,thereby enhancing its optimization precision.Utilizing a position perturbation strategy avoid the decrease of population diversity in the iterative process and enhance the ability of the algorithm to jump out of local optimum.Utilizing a memory update strategy reduces the blindness of the location update strategy.Selecting Fourteen standard test functions examine the excellence of the improved algorithm in convergence accuracy,convergence speed,and statistical tests three aspects. Experimental results show that the improved strategy effetively improves the optimization accuracy and the ability to jump out of the local optimal of the zebra optimization algorithm.The effectiveness and practicability of the algorithm in dealing with practical optimization problems are further verified by engineering optimization problems.

    参考文献
    相似文献
    引证文献
引用本文

黄 子 介,代 永 强.多策略融合的斑马优化算法[J].国外电子测量技术,2024,43(9):59-68

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-13
  • 出版日期:
文章二维码
×
《国外电子测量技术》
财务封账不开票通知