改进Res2Net 和注意力的中药饮片识别模型
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP317.4

基金项目:

2023年江苏省高职院校教师专业带头人高端研修项目(2023TDFX010)资助


Improved Res2Net and attention for Chinese herbal piece recognition model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    中药饮片是指药材经炮制后可直接用于中医临床或制剂生产的药品,针对中药饮片种类繁多、形状各异、鉴别困难的 问题,提出一种改进 Res2Net 和注意力的中药饮片识别模型 BIM-Res2Net50-IECA。首先,在Res2Net 的基础上引入双向融 合策略,促进不同尺度特征之间的有效交互,获取更精细和丰富的特征信息;其次,使用最大池化改进 ECA 注意力机制,同时 增强全局视角和显著性特征,突出中药饮片重要的特征区域;最后,结合 Softmax Loss和Center Loss构造联合损失函数,有 效地调节类内以及类间距离,提高分类的准确性。实验表明,基线模型能有效提取多尺度特征,BIM-Res2Net50-IECA在构建 的16类中药饮片数据集上的准确率、精确率、召回率和FI-Score分别为94.74%、94.27%、94.83%和94.55%,与先进的 Tansformer分类模型相比,具有更低的计算复杂度和更高的准确率,能为中药饮片的智能识别提供有力支持。

    Abstract:

    Chinese herbal medicine decoction pieces refer to drugs that can be directly used in cinical practice or formulation production after processing.In response to the problems of the wide variety,different shapes,and difficult identification of Chinese herbal medicine decoction pieces,this article proposes an improved Res2Net and attention mechanism Chinese herbal medicine decoction piece recognition model BIM-Res2Net50-IECA.Firstly,a bidirectional fusion strategy is introduced on the basis of Res2Net to promote effective interaction between features of different scales and obtain more refined and rich feature information.Secondly,using max pooling to improve the ECA attention mechanism,while enhancing the global perspective and salient features,highlighting the important feature regions of traditional Chinese medicine decoction pieces.Finally,ajoint loss function is constructed by combining Softmax Loss and Center Loss,which effectively adjusts the intra-and inter class distances and improves the accuracy of classification. Experiments have shown that the baseline model proposed in this paper can effectively extract multi-scale features.BIM- Res2Net50-IECA achieved accuracy,precision,recall,and F1-Score of 94.74%,94.27%,94.83%,and 94.55%, respectively.Compared with the advanced Tansformer classification model,it has lower computational complexity and higher accuracy,providing strong support for intelligent recognition of traditional Chinese medicine decoction pieces.

    参考文献
    相似文献
    引证文献
引用本文

谷瑞,宋翠玲,李元昊.改进Res2Net 和注意力的中药饮片识别模型[J].国外电子测量技术,2024,43(9):130-140

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-13
  • 出版日期:
文章二维码
×
《国外电子测量技术》
财务封账不开票通知