基于U-Net 的启闭机钢丝绳缺陷定位方法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TNO

基金项目:


Research on steel wire rope breakage fault localization based on U-Net
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    启闭机钢丝绳在水电站运行中用于闸门提升,对水电生产的安全稳定至关重要。然而,传统的人工检测方法存在效 率低、准确率差等问题。利用钢丝绳监测图像进行缺陷定位,不仅可以大幅提高检测效率,还能够实现高准确率的缺陷定位。 提出了一种基于 U-Net 结构的方法,通过编码器提取不同尺度的图像特征,再利用解码器将这些特征还原为缺陷定位标签, 从而实现钢丝绳的缺陷定位。实验结果表明,所提方法明显优于传统卷积网络,且在Dice系数、交并比(IoU) 和 Hausdorff 距 离3个评价指标上分别优于对比算法0.29、0.23以及0.0047,能够实现更准确的钢丝绳缺陷定位。

    Abstract:

    The wire ropes of the hoisting machine are used for gate lifing in hydropower stations,which is crucial for the safe and stable production of hydropower.However,traditional manual inspection methods have issues such as low efficiency and poor accuracy.Utilizing wire rope monitoring images for defect localization can not only significantly improve inspection eficiency but also achieve highly accurate defect localization.This paper proposes a U-Net-based method that extracts multi-scale image features through an encoder and then restores these features into defect localization labels using a decoder,thereby realizing defect localization in wire ropes.The experimental results show that the proposed method significantly outperforms traditional fully convolutional networks and surpasses the comparison algorithms by 0.29,0.23,and 0.0047 in terms of the Dice coefficient,IoU,and Hausdorff distance,respectively, enabling more accurate wire rope defect localization.

    参考文献
    相似文献
    引证文献
引用本文

邹 磊,冯治国,梁鹏翔,李 昂,牛天宇.基于U-Net 的启闭机钢丝绳缺陷定位方法研究[J].国外电子测量技术,2024,43(9):155-160

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-13
  • 出版日期:
文章二维码
×
《国外电子测量技术》
财务封账不开票通知