基于GAF-MCNN的轴承智能故障诊断方法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP182;TN06

基金项目:

国家级重点科研项目(JSZL2022607B002,JSZL202160113001,JCKY2021608B018) 、 国家重点研发计划项目(2023YFF0719100)、工业和信息化部项目(CEIEC-2022-ZM02-0249) 资助


New fault diagnosis method of bearing based on GAF-MCNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对轴承微小故障信号非平稳非线性且易受背景噪声干扰的特点,提出了一种基于格拉姆角场和多尺度卷积神经网 络(Gramian angular field and multi-scale convolutional neural network,GAF-MCNN)的智能故障诊断方法。首先,利用分段 聚合近似算法对原始振动信号进行压缩降维预处理,以减少数据存储空间和提升计算效率;然后,利用格拉姆角场算法将一 维序列信号转换为二维矩阵热图,二维化后的矩阵加强了原始振动信号间的时间关系,将时间维度编码到了矩阵结构中;最 后,设计了基于多尺度卷积神经网络对故障进行高效快速智能诊断。实验结果表明,GAF-MCNN 诊断方法不仅克服了传统卷积 神经网络诊断方法存在的计算效率较低的问题,而且诊断准确率优于单尺度卷积神经网络方法,具有较强的工程实用性。

    Abstract:

    An intelligent fault diagnosis method based on Gramian angular field and multi-scale convolutional neural network(GAF-MCNN)was proposed to solve the non-stationary,nonlinear and easily disturbed background noise of motor bearing micro-fault signals.Firstly,the piecewise aggregation approximation algorithm is used to compress and reduce the dimension of the original vibration signals to reduce the data storage space and improve the computational efficiency.Then,the one-dimensional sequence signals are converted into two-dimensional matrix heat maps using the gramian angular field algorithm.The two-dimensional matrix strengthens the time relationship between the original vibration signals and encodes the time dimension into the matrix structure.Finally,a multi-scale convolutional neural network is designed to diagnose the fault efficiently and quickly.An example of motor bearing fault diagnosis shows that GAF-MCNN method not only overcomes the problem of low computational efficiency of traditional convolutional neural network diagnosis methods,but also has better diagnostic accuracy than single-scale convolutional neural network method,and has strong engineering practicability.

    参考文献
    相似文献
    引证文献
引用本文

张 超,房颖涛,冯建睿,杨 柯,何世烈,董志杰.基于GAF-MCNN的轴承智能故障诊断方法研究[J].国外电子测量技术,2024,43(9):161-172

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-13
  • 出版日期:
文章二维码
×
《国外电子测量技术》
财务封账不开票通知