GDTN:一种用于生命体征预测的图神经网络
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP183;TN911

基金项目:

国家自然科学基金(62071240,62106111)项目资助


GDTN:A graph neural network for predicting vital signs
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对医疗领域中生命体征预测的准确性低、计算量大、性能不佳等问题,提出了一种用于生命体征预测的可变形注意 力机制的图神经网络模型。该网络保留了传感器的所有时间采样值,利用全连接层进行编码;使用可变形注意力机制作为消 息传递和更新机制,提高了生命体征预测的速度;在解码器方面,采用多头注意力机制,从多尺度、多维度观察和提取信息;将 输入的特征复制多份并设置为单独的图节点,提高了可变形注意力的适应性和模型的特征提取能力;采用残差网络作为解码 器,替代全连接层。输出层使用GeLU 激活函数替代了传统的ReLU 激活函数,解决了激活函数在负半轴信息缺失的问题, 有效地提高了预测的精准度。测试结果表明,模型在P¹9 、P12和PAM 3类数据集上的性能均优于其他模型,各项指标均高于最佳基线性能2.325%,能够有效预测人体的生命体征。

    Abstract:

    This paper proposes a graph neural network with a deformable attention mechanism to address the problems of low accuracy,large computational complexity,and poor performance in predicting vital signs in medical detection.The paper preserves all time sampled values from sensors and encodes them using a fully connected layer.The deformable attention mechanism is used as the message passing update mechanism in the graph neural network,which speeds up the prediction process.In the decoder,a multi-head attention mechanism is used for feature extraction to allow the network to observe information from multiple scales and dimensions.The input features are copied multiple times and set as separate graph nodes to enhance the adaptability of the deformable attention and the feature extraction ability of the model.Instead of a fully connected layer,a residual network is used as the decoder.In the output layer,the GeLU activation function is used instead of the traditional ReLU activation function effectively improve the accuracy of the prediction by addressing the problem of information loss on the negative half-axis.Experimental results demonstrate that the proposed model achieved high performance on three types of datasets(P19,P12,and PAM),with allperformance indicators surpassing those of other models 2.325%and higher than the best baseline performance.This indicates the effectiveness of the proposed model in predicting vital sign.

    参考文献
    相似文献
    引证文献
引用本文

孙佳琪,马陈悦,张雁皓,李长帅,孟祥源,单慧琳. GDTN:一种用于生命体征预测的图神经网络[J].国外电子测量技术,2024,43(10):55-63

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-19
  • 出版日期:
文章二维码
×
《国外电子测量技术》
财务封账不开票通知