基于KPCA-TFPSO-BL的泥石流预测研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

P642;TN919.5

基金项目:

陕西省自然科学基础研究计划(2023-JC-YB-464)、西安交通工程学院中青年基金项目(2023KY-02)资助


Study on debris flow prediction based on KPCA-TFPSO-BL
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当前研究中泥石流诱发因子敏感度各异导致的预测准确度不高、数据集样本有限造成的模型训练和预测效果不 佳、非线性过程严重引起的参数难以确定等问题,利用改进的核主成分分析算法(kernel principal component analysis,KPCA) 筛选出相关性一般的因子,结合宽度学习(broad learning,BL)建立泥石流概率预测模型,再通过引入正弦因子的粒子群算法 (TFPSO) 对模型进行优化,最终建立基于KPCA-TFPSO-BL 的泥石流预测模型。通过实验对比了经典 BL 模型、KPCA- PSO-BL模型以及KPCA-TFPSO-BL 模型的性能,结果表明,KPCA-TFPSO-BL 的均方根误差为4.92,平均绝对误差为 4.60,训练时间为7.22s,该模型在预测误差和训练时间方面综合表现最佳。本研究为泥石流预测领域提供了一种新的思路 和借鉴。

    Abstract:

    In response to the problems of low prediction accuracy caused by the varying sensitivities of debris flow triggering factors in current research,poor model training and prediction performance due to limited dataset samples, and difficulty in determining parameters caused by severe nonlinear processes,an improved kernel principal component analysis(KPCA)algorithm was used to screen out factors with general correlation,combined with broad learning(BL) to establish a debris flow probability prediction model.Then,a particle swarm optimization(PSO)based on sine factors was introduced to optimize the model,and finally,a debris flow prediction model based on KPCA-TFPSO-BL was established.The performance of the classic BL model,KPCA-PSO-BL model,and KPCA-TFPSO-BL model was compared through experiments.The results showed that the root mean square error of KPCA-TFPSO-BL was 4.92,the average absolute error was 4.60,and the training time was 7.22 seconds.This model showed the best comprehensive performance in terms of prediction error and training time.This study provides a new approach and reference for the field of debris flow prediction.

    参考文献
    相似文献
    引证文献
引用本文

徐根祺,曹 宁,李 璐,谢 国 坤,党 文 博.基于KPCA-TFPSO-BL的泥石流预测研究[J].国外电子测量技术,2024,43(10):81-90

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-19
  • 出版日期:
文章二维码
×
《国外电子测量技术》
财务封账不开票通知