基于双重滤波与锐化的遥感图像增强算法
CSTR:
作者:
作者单位:

陕西财经职业技术学院 咸阳 712000

中图分类号:

TP391TN957.53


Remote sense image enhancement algorithm based on filtering and sharpening
Author:
Affiliation:

Shaanxi Technical College of Finance and Economics, Xianyang 712000, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [11]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解决遥感卫星影像普遍存在着亮度、对比度低的问题,提出了基于滤波与锐化的遥感图像增强算法。首先,根据线性运算中核矩阵像素权值特性,设计基于中值滤波与高斯滤波的图像滤波算子。然后,采用图像一阶导数逼近技术,计算图像强度梯度,并采用图像二阶导数计算梯度的散度,从而建立基于Sobel与Laplacian的图像锐化增强算子,以增强图像对比度。最后,基于非局部均值算法,完成图像去噪,实现遥感图像平滑增强的目的。实验测试结果表明,与当前遥感图像增强技术相比,本算法拥有更高的增强质量,更好地保留了图像的亮度与色度信息。

    Abstract:

    In order to solve the problems of low brightness and low contrast in multispectral satellite images, a remote sensing image enhancement algorithm based on filtering and sharpening is proposed. First of all, according to the linear computation kernel matrix pixel weight characteristics, design of image filtering median filter and Gauss filter based on enhanced operator. Then the first order derivative approximation is used to calculate the intensity gradient, and the gradient of the image is calculated by using the two derivative of the image. Then the image sharpening operator based on Sobel and Laplacian is established. Finally, based on the non local mean algorithm, the image denoising is completed to achieve the purpose of remote sensing image smoothing and enhancement. The experimental results show that: compared with the current remote sensing image enhancement technology, the algorithm has a higher enhancement effect, and better preserves the image brightness and chrominance information

    参考文献
    [1]顾明, 郑林涛, 尤政. 基于颜色空间转换的交通图像增强算法[J]. 仪器仪表学报,2016, 36(8):19011907.
    [2]PU X, JIA Z, WANG L, et al. The remote sensing image enhancement based on nonsubsampled contourlet transform and unsharp masking[J]. Concurrency & Computation Practice & Experience, 2014, 26(3):742747.
    [3]曹风云,赵凯,王筱薇. 自适应水下彩色图像增强算法 [J]. 电子测量与仪器学报,2016, 30(5): 772778.
    [4]郭云开. 融合增强型模糊聚类遗传算法与ISODATA算法的遥感影像分类[J]. 测绘通报, 2016,18(15):4247.
    [5]王静静. 基于Shearlet变换和多尺度Retinex的遥感图像增强算法[J].计算机应用,2016, 23(2):171176.
    [6]邵振峰. 改进多尺度Retinex理论的低照度遥感影像增强方法[J]. 武汉大学学报,2016, 6(14):181185.
    [7]LI C, YANG Y, XIAO L, et al. A novel image enhancement method using fuzzy sure entropy[J]. Neurocomputing, 2016, 215:196211.
    [8]谭振坤, 冯登超, 陈刚. 医学超声病灶图像预处理[J]. 国外电子测量技术,2015, 33(3): 8991.
    [9]金汉均, 梅洪洋. Sobel算子在提取视频运动目标轮廓中的应用研究[J]. 电子测量技术,2015, 37(11): 2932.
    [10]JIN B, YOU S J, CHO N I. Bilateral image denoising in the Laplacian subbands[J]. Eurasip Journal on Image & Video Processing, 2015(1):112.
    [11]张砚. 基于剪切波变换的反锐化掩膜遥感图像增强[J]. 计算机工程与应用,2015, 11(17):246249.
    引证文献
引用本文

田文利.基于双重滤波与锐化的遥感图像增强算法[J].国外电子测量技术,2017,36(4):13-16

复制
分享
文章指标
  • 点击次数:1087
  • 下载次数: 2309
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2017-05-31
文章二维码
×
《国外电子测量技术》
2025年投稿方式有变