基于混沌纠错机制的WSN网络数据精确融合算法
CSTR:
作者:
作者单位:

陕西交通职业技术学院 西安 710018

中图分类号:

TP393.04TN 929.5


Data fusion algorithm of WSN network based on chaotic error correcting mechanism
Author:
Affiliation:

Shaanxi Communication Vocational and Technical College, Xi’an 710018, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [11]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为解决当前WSN网络数据精确融合算法存在的数据融合困难,融合精度差且网络数据融合稳定性时间较低等难题,提出了一种基于混沌纠错机制的WSN网络数据精确融合算法。采用误差累计阈值控制方式,在精确取得数据融合带宽及融合误差的同时,能够精准的对数据传输过程中的抖动性进行预测;随后, 采用追溯机制对数据融合过程中的融合带宽精度进行了实时追踪及更新,有效降低了数据融合过程中存在的实时融合困难等问题。仿真实验表明:与当前高维映射一体化融合算法(fusion algorithm of high dimensional mapping,FHDM)相比,本算法具有更低的数据融合误差,以及更高的网络数据稳定融合时间。

    Abstract:

    In order to solve the current WSN network data fusion algorithm are difficult data fusion and fusion accuracy and lower time network data fusion problem, this paper proposes a precise integration algorithm of chaotic data error correction mechanism based on WSN network. The cumulative error threshold control method in accurately obtained data fusion bandwidth and also fusion error, can accurately predict the jitter in the data transmission process; followed by the way back on the fusion bandwidth accuracy of the data fusion process for realtime tracking and updating, effectively reducing the present algorithm in data fusion in the process of realtime fusion problem. Simulation results show that the high dimensional map integration often used with the current fusion algorithm, this algorithm has low error data fusion and network data fusion time of higher stability and other significant advantages, has high practical value.

    参考文献
    [1]石欣, 印爱民, 张琦. 基于K最近邻分类的无线传感器网络定位算法[J]. 仪器仪表学报, 2014, 35(10): 22382247.
    [2]孙斌, 金心宇. 压缩感知在无线传感器网络目标跟踪中的应用[J]. 电子测量与仪器学报, 2014, 28(5):463468.
    [3]周海洋, 余剑. 无线传感器网络中基于RSSI的测距研究 [J]. 电子测量技术, 2014, 37(1): 8991.
    [4]王文吉.基于能量因素的无线传感网络关键节点融合算法[J].电子与信息学报, 2014, 36(7): 17281734.
    [5]ZHANG X. Identifying influential nodes in complex networks with community structure[J]. KnowledgeBased Systems, 2013, 42(13): 7484.
    [6]邬厚民.无线传感网络中能量和距离改良的节点融合算法[J].中国测试,2012, 38(5): 6266.
    [7]张素芹. 多雷达信息融合仿真平台的构建与设计[J]. 国外电子测量技术, 2010, 29(4):7173
    [8]CHEN D. Identifying influential nodes in complex networks [J]. Physical A: Statistical Mechanics and its Applications, 2011, 391(4): 17771787.
    [9]HAO X C. Multipath optimizing routing protocol based on predicting congestion for wireless sensor network[J]. journal of Electronics & Information Technology, 2011, 33(5):12611265.
    [10]AMMARI H M, DAS S K. A Study of kCoverage and Measures of Connectivity in 3D Wireless Sensor Networks[J]. IEEE Transactions on Computers, 2010, 59(2):243257.
    [11]LE H A, FANG L, YUANGUO B I, et al. A TCP Performance Enhancement Scheme in Infrastructure based Vehicular Networks[J]. China Communications, 2015, 12(6):7384.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵晨.基于混沌纠错机制的WSN网络数据精确融合算法[J].国外电子测量技术,2017,36(3):31-34

复制
分享
文章指标
  • 点击次数:1009
  • 下载次数: 1342
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2017-04-18
文章二维码
×
《国外电子测量技术》
2025年投稿方式有变