基于清晰度探测与人机交互的图像质量评价算法
CSTR:
作者:
作者单位:

陕西工业职业技术学院 咸阳 712000

中图分类号:

TP391TN919.81

基金项目:

陕西工业职业技术学院自然科学研究计划(ZK1323)资助项目


Image quality assessment system based on resolution detection and humancomputer interaction
Author:
Affiliation:

Shaanxi Polytechnic Institute, Xianyang 712000, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [10]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解决清晰度函数种类覆盖度小和人机交互缺乏灵活性的背景下,存在图像质量评价力不足的问题,分别从清晰度探测数学模型分析和人机交互软件开发的角度出发,提出了基于清晰度探测与人机交互的图像质量评价算法。首先,根据图像灰度标准差函数、熵函数和傅里叶变换函数,设计了耦合灰度空间域、能量域与频域的清晰度探测算子,多领域评价图像清晰程度。然后,根据Windows消息响应机制,推导图像与控件尺寸转换关系,结合图像部分区域提取方法,实现图像感兴趣区域提取目的。最后,在感兴趣图像区域进行清晰度评价算子计算,开发图像质量评价系统。实验测试结果显示:与当前图像质量评价机制相比,本文机制拥有更健壮的评价力与实用性。

    Abstract:

    In order to solve the current version of the official software is expensive and the definition of function types covered by small and interactive lack of universality in the background, lack of image quality evaluation problems, this paper from the definition of detection model analysis and interactive software development perspective, put forward the image quality evaluation system based on manmachine interaction detection and resolution. Firstly, according to the image gray standard deviation function, the entropy function and the Fu Liye transform function; we design the detection operator of the coupling gray space domain, the energy domain and the frequency domain. Then, according to the Windows message response mechanism, the relationship between the image and the size of the control is deduced, and then the region of interest is extracted with the method of image region extraction. Finally, the image quality evaluation system is developed by integrating the clarity detection operator and the humancomputer interaction mechanism. The experimental results show that compared with the current image quality evaluation mechanism, this mechanism has higher precision and practicability.

    参考文献
    [1]郑绍华, 陈健, 潘林. 面向无参考的眼底成像清晰度实时评价方法[J]. 电子测量与仪器学报,2013,27(3): 241246.
    [2]姚凯. 基于小波清晰度计算的水下图像融合增强研究[J]. 电子测量技术,2015, 38(2): 6467.
    [3]张文娟. 基于非局部结构张量的SSIM图像质量评价方法[J]. 计算机应用研究,2017, 23(11):171176.
    [4]路文.一种像素局部相关性的图像质量评价方法[J]. 西安电子科技大学学报术, 2017,8(5):4247.
    [5]赵泉华, 高郡, 李玉. 基于区域划分的多特征纹理图像分割[J]. 仪器仪表学报,2015, 36(11): 25192530.
    [6]刘琼, 史诺, 申妙芳. 基于区间二型模糊集的农田障碍物分割方法 [J]. 国外电子测量技术, 2016,35(4):8184.
    [7]孙彦景. 基于内在生成机制的多尺度结构相似性图像质量评价[J]. 电子与信息学报,2016,17(12):4750.
    [8]潘雪娟. 基于梯度计算的自动聚焦图像清晰度评价函数仿真分析[J]. 红外技术,2016, 6(14):1115.
    [9]ZOU H D, WANG H X. A new automatic focusing algorithm and its application on vision measuring machine[J]. Applied Mechanics & Materials, 2013, 397400:15231528.
    [10]曾台英. 基于局部离散小波变换的无参考模糊图像质量评价方法[J]. 光电子·激光,2016, 21(13):7176.
    引证文献
引用本文

方小艳.基于清晰度探测与人机交互的图像质量评价算法[J].国外电子测量技术,2017,36(4):32-35

复制
分享
文章指标
  • 点击次数:860
  • 下载次数: 1782
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2017-05-31
文章二维码
×
《国外电子测量技术》
2025年投稿方式有变