基于TCensus的立体匹配算法及FPGA设计
CSTR:
作者:
作者单位:

武汉理工大学机电工程学院 武汉 430070

中图分类号:

TN911.73


Stereo matching algorithm and FPGA design based on TCensus
Author:
Affiliation:

Institute of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着无人机技术的迅速发展,利用无人机代替人工进行电力线巡线是行业内发展的新趋势。尽管无人机电力巡线相对于人工巡检效率更高,更加安全,但无人机巡检仍然面临一些问题,无人机的避障技术亟待完善,在巡检过程中无人机会出现与周边障碍物相撞的情况,尤其是细小的电线对无人机安全造成巨大的威胁。这些线状物往往目标不明显,雷达,超声波等技术得到的回波较少,造成避障困难。基于双目视觉系统的无人机避障技术在无人机避障领域得到了广泛的研究和关注。针对双目视觉实时无人机电力巡检避障应用,提出了基于TCensus(形态学Tophat变换和MiniCensus)变换的匹配代价测量方法来对原始图像中的弱目标进行增强,同时采用基于十字结构的支持区域来提高匹配的准确度。实验证明,本文设计的双目视觉系统可以有效检测无人机到电力线之间的距离,检测误差达到5%,提出的TCensus立体匹配算法与其它方法相比除了能够获得同样准确的背景深度图之外,还能对电线区域具有更精细的成像效果。

    Abstract:

    With the rapid development of UAV technology, the use of unmanned aerial vehicles instead of artificial power line inspection line is the industry development trend. Although UAV power patrols are more efficient and safer than manual inspection, UAV inspection continues to face problems such as aviation restrictions, airborne weight, flight life, obstacle avoidance technology and other factors. Unmanned aerial vehicle obstacle avoidance technology needs to be improved, in the inspection process, no chance will appear with the surrounding obstacles collision situation, and especially the small wires on the UAV caused a huge threat. These lines are often not obvious targets, radar, ultrasound and other technologies to get less echo, resulting in obstacle avoidance difficulties. The UAV obstacle avoidance technology based on binocular vision system has been widely studied and paid attention to in the field of unmanned aerial vehicles. This paper designs a realtime UAV power line detection system based on binocular vision system. In this paper, a matching cost measurement method based on TCensus (morphological Tophat transform and MiniCensus) is proposed to enhance the weak target in the original image, and the support region based on the cross structure is used to improve the matching accuracy. The experimental results show that the binocular vision system can effectively detect the distance between the UAV and the power line, and the detection error is 5%. The stereo matching algorithm proposed in this paper can obtain a better depth map, and the TCensus algorithm can effectively preserve the original image in the weak target line information.

    参考文献
    [1]王冲, 潘晨, 高浩然. 视觉显著性的自适应权重立体匹配算法[J]. 中国计量大学学报, 2016,27(4):435440.
    [2]ZHANG K, LU J, LAFRUIT G. Crossbased local stereo matching using orthogonal integral images[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2009,19(7):10731079.
    [3]MEI X, SUN X, ZHOU M, et al. On building an accurate stereo matching system on graphics hardware[C].IEEE International Conference on Computer Vision Workshops, 2012:467474.
    [4]王倩. 基于自适应权重的双目视觉立体匹配算法的研究与改进[D]. 北京:北京邮电大学, 2015.
    [5]MA N, MEN Y B, MEN C G, et al. Segmentationbased stereo matching using combinatorial similarity measurement and adaptive support region[J]. OptikInternational Journal for Light and Electron Optics, 2017, 137:124134.
    [6]程思培, 达飞鹏. 基于动态规划的分层立体匹配算法研究[J]. 仪器仪表学报, 2016, 37(7):16651672.
    [7]MATTOCCIA S, MARCHIO I, CASADIO M. A compact 3D camera suited for mobile and embedded vision applications[C].Computer Vision and Pattern Recognition Workshops, 2014:195196.
    [8]WANG W, YAN J, XU N, et al. Realtime highquality stereo vision system in FPGA[C].International Conference on FieldProgrammable Technology, 2013:358361.
    [9]ZHANG X, CHEN Z W. A FPGA stereo matching algorithm modeled by DSP builder[J]. Journal of Computers, 2014, 9(10):23592364.
    [10]王鑫,王向军,冯登超,等.特征一致红外弱小目标匹配与定位研究[J].电子测量与仪器学报,2016,30(9): 14051410.
    [11]吴渊凯,卞新高.计算机视觉中摄像机标定的实验分析[J].电子测量技术,2016,39(11):9599.
    [12]SHAN Y, HAO Y, WANG W, et al. Hardware acceleration for an accurate stereo vision system using minicensus adaptive support region[J]. Acm Transactions on Embedded Computing Systems, 2014, 13(4s): 124.
    [13]ZHANG L, ZHANG K, CHANG T S, et al. Realtime highdefinition stereo matching on FPGA[C]. Proceedings of 19th ACM/SIGDA International Symposium Program Gate Arrays,2011: 5564.
    [14]马宏锋. 基于机器视觉的铁路异物侵限分布式智能监控技术研究[D]. 兰州:兰州交通大学, 2014.
    [15]陈鑫元,李筠,杨海马,等.自适应阈值图像二值化及形态学处理的FPGA实现[J].电子测量技术,2016,39(7):6771.
    [16]MOU X, LUO W, ZHENG X, et al. A real time power line detect system based on stereo vision[C]. International Conference on Measurement, Instrumentation and Automation, 2016: 417423.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑晓亮,周晓,欧科君,牟新刚.基于TCensus的立体匹配算法及FPGA设计[J].国外电子测量技术,2017,36(7):71-76

复制
分享
文章指标
  • 点击次数:3315
  • 下载次数: 8619
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2017-08-02
文章二维码
×
《国外电子测量技术》
2025年投稿方式有变