YOLOX-IM:一种无人机航拍视频的轻量化交通参数提取模型
DOI:
CSTR:
作者:
作者单位:

天津职业技术师范大学汽车与交通学院 天津 300222

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

天津市智能交通技术创新团队重点培养专项(XC202028);天津市科技计划项目(22YDTPJC00120);天津市高等学校科技发展基金(2021KJ018)


YOLOX-IM: A Lightweight Traffic Parameter Extraction Model For UAV Aerial Images
Author:
Affiliation:

School of Automotive and Transportation, Tianjin University of Technology and Education, Tianjin 300222,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在无人机航拍的过程中,背景更广阔,目标的尺寸更小,种类更复杂。本文提出一种基于YOLOX-S的轻量化无人机航拍目标检测算法YOLOX-IM。首先,为了提高该模型检测小目标的性能,通过使用切片辅助推理(Slicing Aided Hyper Inference,SAHI)算法以及坐标修正矩阵对训练集进行预处理和数据增强。然后,在路径聚合网络(Path Aggregation Network,PAN)中引入一个浅层特征图以及超轻量级子空间注意模块,并添加一个检测头对小物体进行检测。最后,对边界回归的损失函数进行了优化。在VisDrone2019数据集的消融实验结果表明,所提出的模型检测精度与基础YOLOX-S相比高了8.13%;模型体积4.55MB,相较于原模型下降67.14%。接下来,利用该模型在中国天津市渌水道进行实地交通监测的交通参数提取实验。研究表明:在设定的场景中,当无人机航拍高度为50米时,该模型的交通提取参数精度最高,达到96.14%。

    Abstract:

    In the process of UAV aerial photography, the background is broader and the targets are smaller in size. In this paper, we propose a lightweight target detection algorithm YOLOX-IM for UAV aerial photography based on YOLOX-S. First, to improve the performance of small target decection, the training set is preprocessed and data is enhanced by using a Slicing Aided Hyper Inference (SAHI) algorithm as well as a coordinate correction matrix. Then, a shallow feature map as well as an ultra-lightweight subspace attention module are introduced in the Path Aggregation Network (PAN), and a detection head is added for small object detection. Finally, the loss function of the boundary regression is optimized. The experimental results on the VisDrone2019 dataset show that the proposed model has 8% higher detection accuracy compared with the YOLOX-S; compared with the original model, the model volume is significantly reduced to 4.55MB. Next, the model is used to conduct traffic parameter extraction for field traffic monitoring in Tianjin, Lushui road, China. The study indicates that the model has the highest traffic extraction parameter accuracy of 96.14% at the UAV altitude of 50 meters.

    参考文献
    相似文献
    引证文献
引用本文

刘军黎,刘晓锋,邱 洁,衣雨玮. YOLOX-IM:一种无人机航拍视频的轻量化交通参数提取模型[J].国外电子测量技术,2023,42(01):159-169

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-21
  • 出版日期:
文章二维码
×
《国外电子测量技术》
财务封账不开票通知