基于最优LQR的单人飞行器高度控制
CSTR:
作者:
作者单位:

1.清华大学苏州汽车研究院;2.南京理工大学

中图分类号:

V249.1


Altitude control of single person aircraft based on optimal LQR
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对单人飞行器的空中高度控制,基于其空中机动灵活的特点,对比传统的PID控制,提出最优LQR算法实现稳定高效的的控制,同时优化系统能量使用效率。首先推导并建立了飞行器动力学和运动学的数学模型,以此建立全数字化的Simulink仿真模型,结合线性化分析设计控制器。然后通过设计非零稳态LQR算法,进行了飞行器的高度控制仿真,对比不同的控制输入权重下的控制效果。结果表明,LQR能够实现平滑稳定控制,能耗控制方面,输入权重R=1条件下,峰值控制输入仅为稳态的1.5倍,相比普通控制权重下的峰值输入降低了40%多,达到了预期的效果。

    Abstract:

    For the aerial altitude control of single person aircraft, based on its flexible aerial maneuverability, compared with traditional PID control, the optimal LQR algorithm is proposed to achieve stable and efficient control, while optimizing the energy utilization efficiency of the system. Firstly, the mathematical models of aircraft dynamics and kinematics were derived and established, and a fully digital Simulink simulation model was established based on this, combined with linear analysis to design the controller. Then, by designing a non-zero steady-state LQR algorithm, altitude control simulations of the aircraft were conducted to compare the control effects under different control input weights. The results show that LQR can achieve smooth and stable control. In terms of energy consumption control, under the condition of input weight R=1, the peak control input is only 1.5 times that of the steady state, which is more than 40% lower than the peak input under ordinary control weight, achieving the expected effect.

    参考文献
    [1] Adam P. Cohen, Susan A. Shaheen, Emily M. Farrar. Urban Air mobility: History, Ecosystem, Market Potential, and Challengens[J].Intelligent Transportation Systems (2021).
    [2] 沈跃杰,行鸿彦,王水璋.基于粒子群优化的串级模糊PID无人机飞行控制系统[J].电子测量技术, 2022(001):045.
    [3] 吴振龙,张灿,刘艳红.基于多目标遗传算法的四旋翼飞行器PID设计[J/OL].控制工程,1-11[2024-08-18].
    [4] Won J L ,Nguyen M X ,Phi N N , et al.Adaptive altitude flight control of quadcopter under ground effect and time-varying load: theory and experiments[J].Journal of Vibration and Control,2023,29(3-4):571-581.
    [5] 佘挽强,刘燕斌,陈柏屹.大展弦比飞行器变形辅助高度控制策略[J].北京航空航天大学学报,2024,50(05):1746-1752..
    [6] 唐震宇,张云.多传感器数据融合的四轴飞行器姿态角解算[J].自动化与信息工程,2023,44(01):33-38.
    [7] Anton K ,Nikolay D .Effect of the Earth’s daily rotation on the operation of aircraft in the Arctic[J].Transportation Research Procedia,2021,57301-307.
    [8] 王超,王贵东,白鹏.飞行仿真气动力数据机器学习建模方法[J].空气动力学学报, 2019, 37(3):488-497.
    [9] Mark Drela. Flight Vehicle Aerodynamics[M].The MIT PRESS, 2014.
    [10] 姚红,程文华,张雅声.飞行器动力学与控制Simulink仿真[M].国防工业出版社,2018.
    [11] 吴凡,姜长生.DATCOM在飞翼无人机飞行运动建模中的应用[J].飞机设计, 2010, 30(1):7.
    [12] 张小达,张鹏,李小龙.《标准大气与参考大气模型应用指南》介绍[J].航天标准化, 2010.
    [13] 张珑耀,贾云飞,陶灿辉.基于反馈线性化的水下飞行器最优控制算法研究[J].战术导弹技术,2023,(04):103-108.
    [14] Spagnolo C ,Sumsurooah S ,Hill I C , et al.Finite state machine control for aircraft electrical distribution system[J].The Journal of Engineering,2018,2018(13):506-511.
    [15] Kirk D. Optimal control theory: An introduction[M].New York: Dover Publications,2004
    [16] Elagib R ,Karaasrlan A .Implementation and Stabilization of a Quadcopter Using Arduino and the Combination of LQR and SMC Methods[J].Journal of Engineering Research and Reports,2022,42-58.
    [17] 王天威,黄军魁.控制之美[卷2]最优化控制MPC与卡尔曼滤波器[M].清华大学出版社, 2023
    [18] 齐强,卜祥伟,姜宝续,等.输入受限乘波体飞行器的最优跟踪控制方法[J].南京航空航天大学学报,2021,53(S1):38-44.作者简介时 伟,男,研究生,研究方向飞行控制仿真。Email:348027376@qq.com包建东(通讯作者),男,博士,副教授,研究方向为智能仪器,测试技术等。Email:baojd025@163.com7
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:18
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-08-22
  • 最后修改日期:2024-11-10
  • 录用日期:2024-11-11
文章二维码
×
《国外电子测量技术》
2025年投稿方式有变