基于改进YOLOv5s的充电站内车辆起火检测
DOI:
CSTR:
作者:
作者单位:

1.国网新疆电力有限公司博尔塔拉供电公司;2.华北电力大学

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国网新疆电力有限公司科技项目(5230BJ230003)


Vehicle fire detection in charging stations based on improved YOLOv5s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前对于充电站内车辆起火现象的检测精度较低、检测速度慢等问题,本文从实用化角度出发,提出了一种基于YOLOv5s改进的车辆起火检测方法YOLOv5s-Fast。本文首先在Backbone网络中采用了全局上下文注意力机制与C3模块进行融合,成为一种新的特征提取的模块C3GC,增强模型提取特征的能力,减少了计算量。其次在Neck网络中采用了轻量级上采样算子,能够根据输入图像进行自适应的上采样,提升了检测精度。最后本文引入解耦头,提高了目标检测的准确率与效率。实验结果表明,本文提出的方法YOLOv5s-Fast与原YOLOv5s相比,平均精度提升了4.9%、FPS由原先的46提高到59,方法更加实用化。

    Abstract:

    In response to the current problems of low detection accuracy and slow detection speed of vehicle fires in charging stations, this paper proposes a vehicle fire detection method YOLOv5s-Fast based on YOLOv5s improvement from a practical perspective. This article first uses the global context attention mechanism and C3 module to fuse in the Backbone network, becoming a new feature extraction module C3GC, enhancing the model's ability to extract features and reducing computational complexity. Secondly, in the Neck network, this paper adopts a lightweight upsampling operator that can adaptively upsample based on the input image, improving detection accuracy. Finally, this article introduces a decoupling head to improve the accuracy and efficiency of object detection. The experimental results show that the proposed method YOLOv5-Fast has an average accuracy improvement of 4.9% and an FPS increase from 46 to 59 compared to the original YOLOv5s, making the method more practical.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-03
  • 最后修改日期:2024-10-31
  • 录用日期:2024-10-31
  • 在线发布日期:
  • 出版日期:
文章二维码