基于自编码器无监督学习结构损伤量化检测研究
DOI:
CSTR:
作者:
作者单位:

1.天津城建大学 计算机与信息工程学院 天津 300384;2.天津城建大学计算机与信息工程学院 天津 300384

作者简介:

通讯作者:

中图分类号:

TP212;TN911.72

基金项目:

天津市科技计划项目 23YDTPJC00350


Research on Unsupervised Structural Damage Quantification Detection Based on Autoencoder
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    结构健康检测指通过实时或周期性监测评估工程结构的健康状态,深度学习方法因能从原始数据中提取高层特征而备受关注。针对实际应用中损伤类别的多样性,缺乏对损伤状态进行定量分析,本文提出了部分跳跃卷积自编码器损伤判断量化方法。本方法使用卷积自编码器处理结构响应,将高维数据降维至低维特征空间,通过重构误差设定损伤指标,以判断健康状态;基于低维特征构建损伤系数,实现结构损伤量化。利用IASC-ASC I和IASC-ASCE II数据集验证了算法在损伤判断和量化方面的有效性。实验结果表明,损伤指标对大部分损伤状态的判定准确率达到100%,个别损伤状态下的准确率为96%,对不同损伤状态的量化均符合预期。

    Abstract:

    Structural health monitoring refers to the evaluation of the health condition of engineering structures through real-time or periodic monitoring. Deep learning methods have gained attention due to their ability to extract high-level features from raw data. However, the diversity of damage types in practical applications and the lack of quantitative analysis for damage states remain challenging. In this paper, a partial skip-connected convolutional autoencoder-based approach for damage assessment and quantification is proposed. This method utilizes a convolutional autoencoder to process structural responses, reducing high-dimensional data to a low-dimensional feature space. A damage index is defined based on reconstruction error to assess health status, while a damage coefficient constructed from the low-dimensional features enables quantitative damage assessment. The effectiveness of the algorithm in damage detection and quantification is validated using the IASC-ASCE Benchmark Structures I and II datasets. Experimental results demonstrate that the damage index achieves 100% accuracy in identifying most damage states, with 96% accuracy in certain specific cases, and that the quantification aligns well with expected values across different damage states.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-18
  • 最后修改日期:2024-11-20
  • 录用日期:2024-11-21
  • 在线发布日期:
  • 出版日期:
文章二维码