利用Gauss-Newton算法探究电极数对EIT重建图像质量的影响
CSTR:
作者:
作者单位:

1.贵州中医药大学时珍学院;2.贵州中医药大学时珍学院 贵阳 550200

中图分类号:

TN911.73


The influence of the electrodes’ number on the reconstructed images quality is investigated based on Gauss-Newton algorithm for EIT
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    电阻抗成像(electrical impedance tomography, EIT)技术是一种安全无创、廉价便捷的新型成像技术,通过测量边界电压重建物体组织内部的电导率分布。为了更进一步提升EIT重建图像的质量,本文通过Gauss-Newton算法分析不同电极数、不同有限元数对EIT重建图像质量的影响,并利用相关系数评估EIT重建图像的质量。仿真结果表明:若保持有限元数不变,电极数越多,EIT重建图像的质量越好;同时,若电极数保持不变,有限元数越多,目标物体轮廓形状更接近于真实值,但是EIT重建图像的质量略差;本研究仿真分析为设计EIT成像系统提供了参考基础,为选取EIT系统电极数、有限元数以及提升EIT重建图像质量提供了参考。

    Abstract:

    Electrical impedance tomography (EIT) is a safe, noninvasive, inexpensive, and convenient novel imaging technology. It reconstructs the internal conductivity distribution of objects by measuring boundary voltages. In order to further improve the quality of the reconstructed images for EIT, the influence of the electrodes’ number and finite elements numbers are analyzed by using Gauss-Newton algorithm for the quality of reconstructed images. The quality of the reconstructed images is evaluated by using correlation coefficients. The simulation results show that the quality of the reconstruction image is better under the condition that the number of electrodes is increased. Here, the number of finite elements is kept constant. At the same time, if the number of electrodes remains unchanged, the contour shape of the target object is closer to the true value in the case of increasing the number of finite elements. However, the quality of the reconstruction image is slightly worse. The simulation analysis provides a reference for the design of EIT system in this research. Furthermore, it is a reference to select the electrodes number and finite elements number for EIT system, and to improve the quality of EIT reconstructed images.

    参考文献
    [1] CUI Z, LIU X, QU H, WANG H. Technical Principles and Clinical Applications of Electrical Impedance Tomography in Pulmonary Monitoring [J]. Sensors, 2024, 24: 4539.
    [2] 袁晶晶,戎舟.基于S-PNet的触觉电阻抗成像后处理算法研究 [J]. 国外电子测量技术, 2024, 43(06): 68-75.YUAN J J, RONG Z. Research on post-processing algorithm of tactile electrical impedance tomography based on S-PNet [J]. Foreign Electronic Measurement Technology, 2024, 43(06): 68-75.
    [3] SONG Z Z, WEN J M, et al. An Optimization Algorithm H-GVSPM for Electrical Impedance Tomography [J]. IEEE Sensors Journal, 2023, 23(5): 4518-4526.
    [4] MA H, LI H T, et al. Real-Time Monitoring of Contact Impedance from Multiple Electrode–Scalp Interfaces During Cerebral Electrical Impedance Tomography [J]. IEEE Access, 2019, 7: 95186-95196.
    [5] SHI Y, YANG K, WANG M, et al. Inadequate Data Augmentation with Convolutional Neural Network in Brain Electrical Impedance Tomography [J]. IEEE Sensors Journal, 2024, 24(13): 21490-21499.
    [6] CHEN R, ZHAO S, WU W, SUN Z, WANG J, WANG H, HAN G. A convolutional neural network algorithm for breast tumor detection with magnetic detection electrical impedance tomography [J]. Rev Sci Instrum. 2021, 92(6):064701.
    [7] UM S, LEE J, YOO H J. A 3.8-mW 1.9-mΩ/√Hz Electrical Impedance Tomography IC With High Input Impedance and Loading Effect Calibration for 3-D Early Breast Cancer Detect System [J]. IEEE Journal of Solid-State Circuits, 2024, 59(7): 2019-2028.
    [8] SLOBOD D, LEALI M, SPINELLI E, et al. Integrating electrical impedance tomography and transpulmonary pressure monitoring to personalize PEEP in hypoxemic patients undergoing pressure support ventilation [J]. Crit Care,2022, 26: 314.
    [9] PUEL F, CROGNIER L, SOULE C, VARDON-BOUNES F, et al. Assessment of electrical impedance tomography to set optimal positive end-expiratory pressure for veno-venous ECMO-treated severe ARDS patients [J]. J Crit Care, 2020,60: 38-44.
    [10] 宋振忠, 李建平, 温建明, 等.基于Hadamard product优化多层神经网络的胸部电阻抗成像研究[J].生物医学工程学杂志, 2024, 41(03): 439-446+454.SONG Z Z, LI J P, WEN J M, et al. Research of electrical impedance tomography based on multilayer artificial neural network optimized by Hadamard product for human-chest models [J]. Journal of Biomedical Engineering, 2024, 41(03): 439-446+454.
    [11] 胡远洋. 航空器蒙皮结构缺陷检测电阻抗成像系统设计[J].电子测量技术, 2021, 44(10): 28-32.HU Y Y. Design of electrical impedance tomography system for aircraft skin structure defects [J]. Electronic Measurement Technology, 2021, 44(10): 28-32.
    [12] FANG X, JIANG Y, et al. A New CCERT System with Shielding for Gas-Liquid Two-Phase Flow [J]. IEEE Transactions on Industrial Electronics, 2024, 71(4): 4241-4251.
    [13] ROSHANPANAH A, et al. An Electrical Impedance Imaging System Towards Edge Intelligence for Non-Destructive Testing of Concrete [J]. Tsinghua Science and Technology, 2024, 29(3): 883-896.
    [14] 左瑞雪, 韩仲鑫. 基于电阻抗成像的立木无损检测系统[J].现代电子技术, 2023, 46(24): 61-66.ZUO R X, HAN Z X. EIT?based nondestructive testing system of standing tree [J]. Modern Electronics Technique, 2023, 46(24): 61-66.
    [15] 郑皓楠.电阻抗成像激励测量方式和成像方法研究 [J].电子测试, 2021(05):43-45.ZHENG H N. Research on Measurement and Imaging Methods of Impedance Imaging [J]. Electronic Test, 2021(05):43-45.
    [16] TAKEI M, SAITO Y. Application of the generalized vector sampled pattern matching method to reconstruction of electrical capacitance CT images [J]. Meas. Sci. Technol., 2004, 15(7): 1371–1381.
    [17] ????????????? CHANGIL K, et al. Development of inverse solver based on TSVD in electrical impedance tomography [J]. Journal of the Institute of Electronics and Information Engineers,2017, 54(4): 91-98.
    [18] 张立峰, 陈达, 刘卫亮. 基于两步正则化Gauss-Newton迭代算法的ECT图像重建[J].计量学报, 2024, 45(04): 546-551.ZHANG L F, CHEN D, LIU W L. An Image Reconstruction Method of ECT Based on Two-step Regularzation Gauss-Newtonlterative Algorithm [J]. Acta Metrologica Sinica, 2024, 45(04): 546-551.
    [19] JAUHIAINEN J, KUUSELA P, et al. Relaxed Gauss-Newton Methods with Applications to Electrical Impedance Tomography [J]. SIAM Journal on Imaging Sciences, 2020, 13(3): 1415-1445.
    [20] 戎舟,李若愚,方滔.基于多层人工神经网络的电阻抗成像算法 [J].国外电子测量技术, 2021, 40(01): 80-86.RONG Z, LI R Y, FANG T. Image reconstruction method based on multilayer artificial neural network for electrical impedance tomography [J]. Foreign Electronic Measurement Technology, 2021, 40(01): 80-86.
    [21] REN S, GUAN R, LIANG G, DONG F. RCRC: A Deep Neural Network for Dynamic Image Reconstruction of Electrical Impedance Tomography [J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-11, 2021.
    [22] XIA H, SHAN Q, WANG J, LIU D. NAS Powered Deep Image Prior for Electrical Impedance Tomography [J]. IEEE Transactions on Computational Imaging, 2024, 10: 1165-1174.作者简介宋振忠 1996年2月出生,硕士研究生,助教,主要研究方向为电阻抗成像、深度学习、算法等。E-mail:2429967768@qq.com
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-19
  • 最后修改日期:2024-11-10
  • 录用日期:2024-11-11
文章二维码
×
《国外电子测量技术》
2025年投稿方式有变