利用Gauss-Newton算法探究电极数对EIT重建图像质量的影响
DOI:
CSTR:
作者:
作者单位:

1.贵州中医药大学时珍学院;2.贵州中医药大学时珍学院 贵阳 550200

作者简介:

通讯作者:

中图分类号:

TN911.73

基金项目:


The influence of the electrodes’ number on the reconstructed images quality is investigated based on Gauss-Newton algorithm for EIT
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电阻抗成像(electrical impedance tomography, EIT)技术是一种安全无创、廉价便捷的新型成像技术,通过测量边界电压重建物体组织内部的电导率分布。为了更进一步提升EIT重建图像的质量,本文通过Gauss-Newton算法分析不同电极数、不同有限元数对EIT重建图像质量的影响,并利用相关系数评估EIT重建图像的质量。仿真结果表明:若保持有限元数不变,电极数越多,EIT重建图像的质量越好;同时,若电极数保持不变,有限元数越多,目标物体轮廓形状更接近于真实值,但是EIT重建图像的质量略差;本研究仿真分析为设计EIT成像系统提供了参考基础,为选取EIT系统电极数、有限元数以及提升EIT重建图像质量提供了参考。

    Abstract:

    Electrical impedance tomography (EIT) is a safe, noninvasive, inexpensive, and convenient novel imaging technology. It reconstructs the internal conductivity distribution of objects by measuring boundary voltages. In order to further improve the quality of the reconstructed images for EIT, the influence of the electrodes’ number and finite elements numbers are analyzed by using Gauss-Newton algorithm for the quality of reconstructed images. The quality of the reconstructed images is evaluated by using correlation coefficients. The simulation results show that the quality of the reconstruction image is better under the condition that the number of electrodes is increased. Here, the number of finite elements is kept constant. At the same time, if the number of electrodes remains unchanged, the contour shape of the target object is closer to the true value in the case of increasing the number of finite elements. However, the quality of the reconstruction image is slightly worse. The simulation analysis provides a reference for the design of EIT system in this research. Furthermore, it is a reference to select the electrodes number and finite elements number for EIT system, and to improve the quality of EIT reconstructed images.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-19
  • 最后修改日期:2024-11-10
  • 录用日期:2024-11-11
  • 在线发布日期:
  • 出版日期:
文章二维码