考虑天然气动态的综合能源系统运行可靠性分析
CSTR:
作者单位:

三峡大学

中图分类号:

TM712;TN911.7

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • | | | |
  • 文章评论
    摘要:

    在电气综合能源系统运行可靠性分析中,传统数值算法在求解天然气动态时计算量庞大,难以在运行的时间尺度内有效完成动态分析。本文提出了一种新的方法:基于神经网络结合多尺度膨胀卷积和注意力机制,替代传统数值算法。该模型首先利用卷积神经网络(convolutional neural network,CNN)进行特征提取,结合长短期记忆网络(long short-term memory,LSTM)捕捉时间序列特征,并通过多尺度膨胀卷积扩展感受野以及引入注意力机制提升对关键状态变化的敏感度。通过序列到序列的学习过程,模型能够准确捕捉相邻时间步之间的复杂映射关系,构建气网动态代理模型。最后,将气网动态代理模型与电力系统潮流模型相结合,并利用蒙特卡洛法和多态模型完成了电气综合能源系统运行可靠性的全面分析。在配网级电-气综合能源系统的实际测试中,验证结果表明,所提出的CNN-LSTM组合模型不仅能够准确模拟气网动态的复杂特性,且显著提高了计算效率,满足了大规模综合能源系统运行可靠性评估的要求。

    Abstract:

    In the reliability analysis of electrical integrated energy systems,traditional numerical algorithms struggle with the high computational demands of natural gas dynamics,making timely dynamic analysis difficult. This paper presents a novel approach that replaces these algorithms with a neural network-based method using multi-scale dilated convolution and attention mechanisms. The model utilizes Convolutional Neural Networks (CNN) for feature extraction and Long Short-Term Memory (LSTM) networks to capture time series characteristics. Multi-scale dilated convolutions expand the receptive field,while attention mechanisms enhance sensitivity to critical changes. This sequence-to-sequence learning process accurately models complex relationships between time steps,resulting in a dynamic surrogate model for the gas network.The gas network model is integrated with the power system flow model,allowing for a comprehensive reliability analysis using Monte Carlo methods and multi-state models. Tests on a distribution-le

    参考文献
    [1] 贾宏杰,穆云飞,余晓丹. 对我国综合能源系统发展的思考[J]. 电力建设,2015,36(01):16-25.
    JIA Hongjie, MU Yunfei, YU Xiaodan. Thought About the Integrated Energy System in China[J]. Electric Power Construction,2015,36(01):16-25.
    [3] [2] 朱继忠,骆腾燕,吴皖莉,等. 综合能源系统运行可靠性评估评述Ⅰ:模型驱动法[J]. 电工技术学报,2022,37(11):2761-2776.
    ZHU Jizhong, LUO Tengyan, WU Wanli, et al. A Review of Operational Reliability Assessment of Integrated Energy Systems Ⅰ: Model-Driven Method[J]. Transactions of China Electrotechnical Society,2022,37(11):2761-2776.
    [5] [3] 严竹菁. 电-气综合能源系统中的配电网运行可靠性评估[D]. 东南大学,2020.
    [6] [4] 韩子娇,李正文,张文达,等. 计及光伏出力不确定性的氢能综合能源系统经济运行策略[J]. 电力自动化设备,2021,41(10):99-106.
    HAN Zijiao, LI Zhengwen, ZHANG Wenda, et al. Economic operation strategy of hydrogen integrated energy system considering uncertainty of photovoltaic output power[J]. Electric Power Automation Equipment,2021,41(10):99-106.
    [8] [5] 崔艳妍,刘伟,苏剑,等. 考虑最优负荷削减与热负荷惯性的综合能源系统可靠性评估[J]. 电力建设,2021,42(04):40-48.
    CUI Yanyan, LIU Wei, SU Jian, et al. Reliability Evaluation of Integrated Energy System Considering Optimal Load Reduction and Thermal Load Inertia[J]. Electric Power Construction,2021,42(04):40-48.
    [10] [6] 李维展,邵常政,胡博,等. 计及元件故障率时变特性的综合能源系统运行可靠性高效评估方法[J]. 电力自动化设备,2024,44(02):182-189.
    LI Weizhan, SHAO Changzheng, HU Bo, et al. Efficient evaluation method for operational reliability of integrated energy system considering time-varying characteristics of component failure rate[J]. Electric Power Automation Equipment,2024,44(02):182-189.
    [12] [7] 向川,陈鎏凯,陈勇,等. 基于深层级联残差图卷积的暂态稳定评估模型及其实际电网应用[J]. 广东电力,2024,37(6):62-69.
    XIANG Chuan, CHEN Liukai, CHEN Yong, et al. Application of Transient Stability Assessment Model Based on Deep Cascading Residual Graph Convolution Network in Real World Power Grids[J]. Guangdong Electric Power,2024,37(6):62-69.
    [14] [8] Yao S, Gu W, Lu S, et al. Dynamic Optimal Energy Flow in the Heat and Electricity Integrated Energy System[J]. IEEE transactions on sustainable energy,2021,12(1):179-190.
    [15] [9] 徐涛,张召彬,李守定,等. 天然气水合物原位补热降压充填开采方法三维数值模拟研究[J]. 工程地质学报,2021,29(06):1926-1941.
    XU Tao, ZHANG Zhaobin, LI Shouding, et al. 3D Numerical Evaluation of Gas Hydrate Production Performance of the Depressurization and Backfilling with In-Situ Supplemental Heat Method[J]. Journal of Engineering Geology,2021,29(06):1926-1941.
    [17] [10] 杨汉. 综合能源系统电气热多时间尺度动态建模及稳定性研究[D]. 长沙理工大学,2020.
    [18] [11] 罗霄,张民,蒋啸天,等. 物理信息神经网络驱动的光纤非线性建模[J]. 红外与激光工程,2023,52(12):244-254.
    Luo Xiao, Zhang Min, Jiang Xiaotian, et al. Nonlinear dynamic modeling of fiber optics driven by physics-informed neural network[J]. Infrared and Laser Engineering,2023,52(12):244-254.
    [20] [12] 朱继忠,骆腾燕,吴皖莉,等. 综合能源系统运行可靠性评估评述Ⅱ:数据驱动法与模型-数据混合驱动法[J]. 电工技术学报,2022,37(13):3227-3240.
    ZHU Jizhong, LUO Tengyan, WU Wanli, et al. A Review of Operational Reliability Assessment of IntegratedEnergy Systems Ⅱ : Data-Driven Method and Model-Data[J]. Transactions of China Electrotechnical Society,2022,37(13):3227-3240.
    [22] [13] 吴永洪,张智斌. 基于贝叶斯优化的CNN-GRU短期电力负荷预测[J]. 现代电子技术,2023,46(20):125-129.
    WU Yonghong, ZHANG Zhibin. CNN?GRU short?term power load forecasting based on Bayesian optimization[J]. Modern Electronics Technique,2023,46(20):125-129.
    [24] [14] Wei M, Wen M, Zhang Y. A novel spatial electric load forecasting method based on LDTW and GCN[J]. IET generation, transmission & distribution,2024,18(3):491-505.
    [25] [15] Cao Z, Wang J, Xia Y. Combined electricity load-forecasting system based on weighted fuzzy time series and deep neural networks[J]. Engineering Applications of Artificial Intelligence,2024,132(108375.
    [26] [16] 张开伟,文中,杨生鹏,等. 基于改进Cao算法的SSA与误差修正的超短期风电功率预测[J]. 国外电子测量技术,2024,43(08):37-46.
    ZHANG Kaiwei, WEN Zhong, YANG Shengpeng. Ultra-short-term wind power forecasting through improved Caoalgorithm for SSA and error correction[J]. Foreign Electronic Measurement Technology ,2024,43(08):37-46.
    [28] [17] 王新,张良,任晓龙,等. 融合图神经网络模型与强化学习的综合能源系统优化调度[J]. 电力系统保护与控制,2023,51(24):102-110.
    WANG Xin, ZHANG Liang, REN Xiaolong, et al. Optimal scheduling of integrated energy systems by fusing a graph neural network model and reinforcement learning[J]. Power System Protection and Control,2023,51(24):102-110.
    [30] [18] 刘建行,刘方. 基于深度强化学习的梯级水蓄风光互补系统优化调度策略研究[J]. 广东电力,2024,37(5):10-22.
    LIU Jianhang, LIU Fang. Research on Optimized Dispatching Strategy of Cascade Hydropower-pumping-storage-wind-photovoltaic Multi-energy Complementary System Based on Deep Reinforcement Learning[J]. Guangdong Electric Power,2024,37(5):10-22.
    [32] [19] Zheng Q, Gu Y, Liu Y, et al. Chaotic particle swarm algorithm-based optimal scheduling of integrated energy systems[J]. Electric Power Systems Research,2023,216(108979.
    [33] [20] Liang T, Zhang X, Tan J, et al. Deep reinforcement learning-based optimal scheduling of integrated energy systems for electricity, heat, and hydrogen storage[J]. Electric Power Systems Research,2024,233(110480.
    [34] [21] 许康平,王程,毕天姝. 基于气网动态代理模型的电–气综合能源系统最优能流计算[J]. 中国电机工程学报,2023,43(09):3415-3429.
    XU Kangping, WANG Cheng, BI Tianshu. Optimal Energy Flow Calculation of Integrated Electric-gas Systems Based on Gas Network Dynamic Surrogate Model[J]. Proceedings of the CSEE,2023,43(09):3415-3429.
    [36] [22] 钱东浩. 多能流网络下CCHP及控制系统仿真研究[D]. 大连理工大学,2020.
    [37] [23] Ding L, Cui Y, Yan G, et al. Distributed energy management of multi-area integrated energy system based on multi-agent deep reinforcement learning[J]. International Journal of Electrical Power & Energy Systems,2024,157(109867.
    [38] [24] 陈彬彬,孙宏斌,陈瑜玮,等. 综合能源系统分析的统一能路理论(一):气路[J]. 中国电机工程学报,2020,40(02):436-444.
    CHEN Binbin, SUN Hongbin, CHEN Yuwei, et al. Energy Circuit Theory of Integrated Energy System Analysis (I): Gaseous Circuit[J]. Proceedings of the CSEE,2020,40(02):436-444.
    [40] [25] 王舒萍,张沈习,程浩忠,等. 计及用户热舒适度的综合能源系统可靠性指标及评估方法[J]. 电力系统自动化,2023,47(01):86-95.
    WANG Shuping, ZHANG Shenxi, CHENG Haozhong, et al. Reliability Indices and Evaluation Method of Integrated Energy System Considering Thermal Comfort Level of Customers[J]. Automation of Electric Power Systems,2023,47(01):86-95.
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:3
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-10-12
  • 最后修改日期:2024-11-05
  • 录用日期:2024-11-05
文章二维码
×
《国外电子测量技术》
2025年投稿方式有变