基于改进长短期记忆网络的飞控系统飞参数据异常检测方法
DOI:
CSTR:
作者:
作者单位:

1.成都飞机设计研究所;2.四川大学电气工程学院

作者简介:

通讯作者:

中图分类号:

TH165+.3

基金项目:


Anomaly Detection Method for Flight Control System Flight Parameters Based on Improved Bidirectional Long Short-Term Memory Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    飞行控制系统作为战斗机的核心安全保障,负责控制飞行姿态、航向和高度等关键动作。对飞控系统的监测飞行参数进行分析,有助于及时发现异常,提升故障识别速度,从而确保飞行安全。针对传统单向神经网络结构难以有效捕捉复杂飞控系统飞参数据的时间依赖性,以及MSE损失函数在处理异常与噪声时的鲁棒性不足的问题,本文提出双向LSTM模型,同时结合Huber Loss以增强对噪声的抗干扰能力,针对飞行参数,首先进行特征数据对齐和降采样处理,采用滑窗自回归预测方法学习飞机的正常飞行模式,并通过Huber Loss设定异常检测阈值,从而判断测试集中的异常点。实验在卡内基梅隆大学提供的ALFA数据集上进行,结果表明,所提出的改进Bi-LSTM模型在多项指标上优于当前先的异常检测模型,特别是在F1分数和AUC等关键指标上表现优异,可有效提升模型的异常检测能力。

    Abstract:

    The flight control system, as the core safety assurance of a fighter jet, is responsible for controlling key actions such as flight attitude, heading, and altitude. Analyzing the monitoring parameters of the flight control system helps to detect anomalies in a timely manner, improving fault identification speed and ensuring flight safety. To address the challenges of traditional unidirectional neural networks in effectively capturing the temporal dependencies in complex flight control system data, and the insufficient robustness of the MSE loss function when handling anomalies and noise, this paper proposes a Bidirectional LSTM model, combined with Huber Loss to enhance noise resistance. For flight parameters, feature data alignment and down-sampling are performed first, and a sliding-window autoregressive prediction method is used to learn the normal flight patterns. The anomaly detection threshold is then set using Huber Loss to identify anomalies in the test set. Experiments were conducted on the ALFA dataset provided by Carnegie Mellon University, and the results show that the proposed improved Bi-LSTM model outperforms current state-of-the-art anomaly detection models across multiple metrics, particularly excelling in key indicators such as F1 score and AUC, effectively improving the model's anomaly detection capabilities.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-12
  • 最后修改日期:2024-11-30
  • 录用日期:2024-12-03
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《国外电子测量技术》
财务封账不开票通知