基于改进YOLOv5的陶瓷基片缺陷识别
DOI:
CSTR:
作者:
作者单位:

1.中北大学;2.中国科学院声学研究所东海研究站;3.浙江新纳材料科技股份有限公司

作者简介:

通讯作者:

中图分类号:

TP391.41;TN04

基金项目:

山西省基础研究计划、国家重点研发计划


Defect Identification on Ceramic Substrates Based on Improved YOLOv5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    陶瓷基片的缺陷严重影响电子器件的性能,为提高缺陷检测的准确性,本文基于超声显微镜扫描的陶瓷基片检测方法,提出了一种改进YOLOv5的神经网络算法。根据超声检测具有穿透性的优点,增加一条新的主干网络综合陶瓷基片表面与内部的回波信息,同时使用极化注意力机制进行特征融合提高检测的精确度,并融合了轻量化网络减少参数量。本文进行了超声显微镜扫描陶瓷基片实验分析缺陷特征并制作数据集,在此数据集上本文提出的FusionPol-YOLOv5模型对9种缺陷检测的平均精确度达到88.3%,mAP@0.5达到91.7%,可以极大减少陶瓷基片检测的人力物力损耗和成本。

    Abstract:

    The defects of ceramic substrates have a significant impact on the performance of electronic devices. To enhance the accuracy of defect detection, in this paper, based on the detection method of ceramic substrates by ultrasonic microscopy scanning, an improved neural network algorithm of YOLOv5 is proposed. Taking advantage of the penetrability of ultrasonic detection, a new backbone network is added to comprehensively integrate the echo information from both the surface and interior of the ceramic substrates. Meanwhile, a polarization attention mechanism is employed for feature fusion to improve the detection precision, and a lightweight network is integrated to reduce the number of parameters. Experiments of ultrasonic microscopy scanning on ceramic substrates were carried out to analyze the defect characteristics and create a dataset. On this dataset, the FusionPol-YOLOv5 model proposed in this paper achieves an average accuracy of 88.3% for the detection of 9 types of defects, with an mAP@0.5 of 91.7%. It can significantly reduce the human and material resources consumption and costs in the detection of ceramic substrates.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-15
  • 最后修改日期:2024-11-29
  • 录用日期:2024-12-04
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《国外电子测量技术》
财务封账不开票通知