基于异源特征融合的电力设备分割与异常发热检测
DOI:
CSTR:
作者:
作者单位:

1.国网宁夏电力有限公司超高压分公司;2.国网宁夏电力有限公司;3.河海大学

作者简介:

通讯作者:

中图分类号:

TP391.4;TN919.82

基金项目:

国网宁夏电力有限公司科技项目(5229CG230003)


Segmentation and anomalous heat detection of power equipment based on heterogeneous feature fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了从复杂的变电站场景中准确检测电力设备的异常发热区域,本文提出了一种融合红外与可见光异源图像特征的电力设备异常发热检测方法。首先,构建基于语义边缘信息协同增强的电力设备语义分割网络,通过构建多级跨模态特征融合模块,采用分层融合策略整合跨模态特征,从而提升模型对图像的理解能力。在特征解码阶段引入边缘信息监督模块,以增强分割边缘的清晰度与连续性,准确去除图像中的背景区域。在此基础上,提出一种基于注意力机制与残差信息优化的异常发热检测方法,设计了多级特征融合与注意力增强模块,分析红外与可见光前景特征,引入图像的残差信息,进一步加强对异常发热区域的探查能力并显著提升检测精度。通过现场采集的数据并进行手工标注,自建数据集并与多种先进算法进行了对比实验,语义分割的mAcc和mIoU分别达到97.2%和88.9%,设备异常发热区域检测的E-measure指标较次优算法提升2.6%。实验结果表明,本文所提出的方法能够高效、准确地检测复杂场景中的电力设备异常发热区域。

    Abstract:

    To accurately detect abnormal heating regions of power equipment in complex substation scenarios, this paper proposes a method for detecting abnormal heating of power equipment by fusing heterogeneous features from infrared and visible images. First, a semantic segmentation network for power equipment is constructed, enhanced through semantic edge information collaboration. A multi-level cross-modal feature fusion module is designed, adopting a hierarchical fusion strategy to integrate cross-modal features, thereby improving the model's ability to comprehend images. During the feature decoding stage, an edge information supervision module is introduced to enhance the clarity and continuity of segmentation boundaries, effectively removing background regions from the images. On this basis, an abnormal heating detection method optimized by attention mechanisms and residual information is proposed. A multi-level feature fusion and attention enhancement module is designed to analyze infrared and visible light foreground features, and residual information from the images is incorporated to further improve the detection capability and significantly enhance detection accuracy for abnormal heating regions. Using field-collected and manually annotated data, a self-built dataset was compared against multiple state-of-the-art algorithms. The proposed method achieved mAcc and mIoU scores of 97.2% and 88.9%, respectively, for semantic segmentation, and the E-measure for abnormal heating detection improved by 2.6% compared to the next-best algorithm. Experimental results demonstrate that the proposed method can efficiently and accurately detect abnormal heating regions of power equipment in complex scenarios.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-21
  • 最后修改日期:2024-11-22
  • 录用日期:2024-11-22
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《国外电子测量技术》
财务封账不开票通知