基于改进YOLOv5n-LPRNet的低照度车牌识别方法
DOI:
CSTR:
作者:
作者单位:

1.国网新疆电力有限公司博尔塔拉供电公司;2.华北电力大学

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国网新疆电力有限公司科技项目(5230BJ230003)


Lowlight Car Plate Recognition Method Based On Improved YOLOv5n-LPRNet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在电动汽车充电场所,为防止非电动汽车占用充电车位可以在充电桩上设置摄像头并结合目标识别技术实现对汽车类型与车牌号的识别,然而该目标识别任务在更复杂的条件如低照度环境下保证识别精度将具有一定的挑战性。为了解决上述问题,本文提出一种轻量化的、易部署于边缘计算设备的、基于改进YOLOv5n-LPRNet的低照度车牌识别方法。该方法的主要思想为增强-分割-识别,通过将CLAHE及GAMMA变换、YOLOv5n分割网络和LPRNet字符识别网络结合起来,实现端到端的车牌识别。具体改进为:运用“低FLOPs陷阱”思想,将YOLOv5n骨干网络中的CBS模块替换为DynamicConv,并将骨干网络中的C3模块与DynamicConv结合;将YOLOv5n颈部网络中的C3模块替换为YOLOv9提出的RepNCSPELAN模块;在LPRNet网络的两个Dropout层后加入EMA注意力机制。实验结果表明,改进后的模型与原模型相比,分割模型的mask类平均精度提升了约2%,同时在保持实时性的前提下损失少量帧数;识别模型的准确率提高了约9%。

    Abstract:

    In electric vehicle charging facilities, to prevent non electric vehicles from occupying charging spaces, cameras can be installed on charging piles and combined with target recognition technology to achieve recognition of vehicle type and license plate number. However, ensuring recognition accuracy in more complex conditions such as low lighting environments will be challenging. The manual method is time-consuming and laborious, with its efficiency not guaranteed. In order to solve the above problems, this paper proposes a lightweight low-light license plate recognition method based on improved YOLOv5n-LPRNet, which can be easily deployed in edge computing devices. The main idea of this method is Enhance-Segmentation-Recognition, which achieves end-to-end license plate recognition by combining CLAHE-GAMMA transform, YOLOv5n segmentation network and LPRNet character recognition network. The specific improvement is as follows: Using the idea of "Low FLOPs pitfall", the CBS module in YOLOv5n backbone network is replaced by DynamicConv, and the C3 module in backbone network is combined with DynamicConv; The C3 module in the neck network of YOLOv5n was replaced by the RepNCSPELAN module proposed by YOLOv9. The EMA attention mechanism is added after two Dropout layers of the LPRNet network. The experimental results show that compared with the original model, the mask_mAP of the improved model is improved by about 2%, and a small number of frames are lost while maintaining real-time performance. The accuracy of the recognition model improved by about 9%.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-11
  • 最后修改日期:2024-12-10
  • 录用日期:2024-12-13
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《国外电子测量技术》
财务封账不开票通知