基于深度学习增强的散射介质成像重建
DOI:
CSTR:
作者:
作者单位:

中北大学

作者简介:

通讯作者:

中图分类号:

TN27

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目),山西省基础研究计划资助项目,山西省高等学校科技创新项目


Deep Learning-Enhanced Imaging Reconstruction through Scattering Media
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在复杂散射条件下,通过采集的散斑来获取目标的清晰图像是非常困难的。为此,提出了一种基于pix2pix生成对抗网络的深度学习框架来实现散斑图像的复原。实验设置了五组对焦条件以采集具有不同相关性的散斑图像,前四组参与网络训练并选取20%的数据作为验证集,第五组不参与训练用于验证框架的泛化能力。结果表明,即使对互信息值小于1的弱相关散斑图像以及未见过的散射条件下的散斑图像,网络仍然能够实现较好的复原,SSIM和PSNR分别可以达到0.81与18.5。该方法展现了网络在复杂散射条件下的强泛化能力,为实际成像应用提供了新思路。

    Abstract:

    Under complex scattering conditions, obtaining clear target images from captured speckles is highly challenging. To address this, a deep learning framework based on the pix2pix generative adversarial network is proposed for speckle image reconstruction. The experiment includes five groups of focus conditions to capture speckle images with varying correlations. The first four groups are used for network training, with 20% of the data selected as the validation set, while the fifth group is excluded from training to verify the generalization ability of the framework. The results show that even for weakly correlated speckle images with mutual information values less than 1, as well as speckle images captured under unseen scattering conditions, the network can achieve effective reconstruction, with SSIM and PSNR reaching 0.81 and 18.5, respectively. This method demonstrates the network's strong generalization ability under complex scattering conditions, providing new insights for practical imaging applications.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-12
  • 最后修改日期:2024-12-17
  • 录用日期:2024-12-18
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《国外电子测量技术》
财务封账不开票通知