查 询 高级检索+
共找到相关记录1条
    全 选
    显示方式:|
    • 基于OpenCV和 YOLOv5的车道线检测与识别

      2024, 43(6):134-142.

      关键词:车道线检测与识别;目标识别;OpenCVCanny算子;YOLOv5
      摘要 (247)HTML (0)PDF 13.75 M (4664)收藏

      摘要:为更加快速、准确识别汽车行驶区域并区分车道,实现无人驾驶,提出一种结合视觉OpenCV 算法和改进 YOLOv5算 法的目标检测跟踪模型进行车道线检测的方法。在图像预处理阶段,首先读取视频图像,把每一帧RGB图像转为灰度图,通 过Canny 算子对图像的边缘轮廓进行提取,然后绘制车道线的掩码区域,并与边缘检测结合,采用ROI 技术提取感兴趣区域, 最后进行概率霍夫变换和最小二乘拟合,将得到的直线绘制到原图像中,最终对每一帧处理后的图像进行输出。目标识别模 块采用卷积神经网络(convolutional neural network,CNN)深度学习方法及 YOLOv5算法进行目标识别处理。实验结果表 明,所提检测算法能够实现准确的车道线检测,实时性和准确性比传统算法高很多,且该方法具有良好的鲁棒性。

    上一页1下一页
    共1页1条记录 跳转到GO
出版年份

×
《国外电子测量技术》
2025年投稿方式有变