查 询 高级检索+
共找到相关记录1条
    全 选
    显示方式:|
    • 基于时频谱图特征和PSO-CNN的外破振动信号识别

      2023, 42(01):144-152.

      关键词:时频谱图;2D-PCA降维;惯性权重;卷积神经网络;粒子群优化算法
      摘要 (258)HTML (0)PDF 7.37 M (569)收藏

      摘要:为避免地下电缆遭受破坏,提高振动监测系统对外力破坏的预警能力,提出一种基于时频谱图和自适应动态权重PSO-CNN的外破振动信号识别方法。首先,将振动传感系统获取的3000组外破振动信号转化生成为时频谱图数据集,在图像预处理阶段,采用直方图均衡化和2D-PCA算法来增强灰度图像特征并实现图像数据的降维;然后,将图像数据集的70%作为CNN模型的训练集,并在网络训练过程中引入自适应动态惯性权重粒子群算法(PSO)对CNN模型的卷积层、池化层相关参数进行迭代寻优,从而获得优化PSO-CNN分类模型;最后,利用测试集图像数据对优化PSO-CNN模型的识别性能进行验证,并与其他分类模型进行了对比。结果表明:所提方法对六种常见外破振动信号的识别准确率达到98.33%,平均每张图像的识别时间仅为0.24s,与其他分类算法相比具有更高的分类精度和更快速的识别速度,为快速准确地识别外力破坏事件类型提供了一种可行方案。

    上一页1下一页
    共1页1条记录 跳转到GO
出版年份

×
《国外电子测量技术》
2025年投稿方式有变