基于概率路线图法的窄道采样与轨迹优化
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP242

基金项目:

国家自然科学基金(61863002)项目资助


Narrow area sampling and trajectory optimization based on probabilistic roadmap
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种结合莱维飞行和概率路线图法(Levy-probabilisticroadmap,LPRM)的路径规划算法。将莱维飞行方法应用 于窄道采样,障碍物中的随机点通过莱维飞行走至自由空间,并延长碰撞测试来确保采样点位于窄道内,提升狭窄区域的采 样质量与效率;为避免大量无效点的生成,在采样前先对地图进行预处理,膨胀障碍并对其进行边界提取,根据边界信息计算 狭窄区域采样点数量,保证了全图采样的合理分布;进一步考虑移动机器人的实际工作情况,采用分段贝塞尔曲线对路径轨 迹进行优化使其符合运动学约束,提高移动机器人的机动性。仿真实验在不同环境地图下对比了LPRM、传统概率路线图 (PRM) 和桥测试3种算法,结果表明LPRM 算法相较两者在单一窄道环境下规划效率分别提升35.1%和32.2%,在复杂环 境下其规划效率分别提升32.9%和15.5%,且提前400和100个采样点达到收敛,规划效率和成功率显著提高,总体耗时更 短、路径更优,能减少移动机器人本身的能耗,提高整体工作效率。

    Abstract:

    A path planning algorithm combining Levy flight and probabilistic roadmap methods(LPRM)is proposed. The Levy flight method is applied to narrow area sampling,random points in obstacles are walked to free space by Levy flight,and the collision test is extended to ensure that the sampling points are located in the narrow area,which improves the sampling quality and efficiency in narrow areas.To avoid the generation of invalid points,the map is pre- processed before sampling,the obstacles are inflated and their boundaries are extracted,and the number of sampling points in narrow areas is calculated based on the boundary information,ensuring a reasonable distribution of sampling across the map.Further,considering the actual working condition of the mobile robot,the path trajectory is optimized by using segmented Bessel curves to conform to its kinematic constraints and improve the mobility of the mobile robot. The simulation experiments compare three algorithms,LPRM,traditional PRM and bridge test,under different environment maps,and the results show that the LPRM algorithm improves the planning efficiency by 35.1%and 32.2%respectively compared to both in a single narrow area environment,and its planning efficiency improves by 32.9%and 15.5%respectively in a complex environment,and reaches convergence 400 and 100 sampling points earlier, the planning efficiency and success rate improved significantly,with shorter overall time consumption and better paths, which can reduce the energy consumption of the mobile robot itself and improve the overall work efficiency.

    参考文献
    相似文献
    引证文献
引用本文

徐大也,胡立坤,王小勇,刘恒佳.基于概率路线图法的窄道采样与轨迹优化[J].国外电子测量技术,2023,42(2):1-8

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-16
  • 出版日期:
文章二维码