基于二次分解和 GRU-attention的时间序列预测研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP393

基金项目:

陕西省2020年技术创新引导专项(基金)计划(2020CGXNG-026) 项目资助


Research on time series forecasting based on quadratic decomposition and GRU-attention
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对时间序列规律难以捕捉且具有高度非平稳性特征导致的预测精度较低问题,提出了一种基于二次分解和注意力 机制优化门控循环单元(GRU-attention) 的时间序列预测模型。首先利用完全集合经验模态分解(complete ensemble empiri- cal mode decomposition with adaptive noise,CEEMDAN)将时间序列分解为若干个特征互异的模态分量,并依据样本熵量化 各分量复杂度。其次采用变分模态分解(variational modal decomposition,VMD)弱化高熵值分量的非平稳性特征。接着使用 注意力机制优化GRU 预测模型。最后对各分量建立 GRU-attention 模型进行预测,将各分量预测结果叠加获得最终结果。 通过实验分析证明,所提出的模型与其他模型相比能够较好的捕捉序列的复杂规律、降低序列的非平稳性并且具有较高的预 测性能,其平均绝对百分比误差达到了2.9%,决定系数达到了0.891。

    Abstract:

    Aiming at the problem of low prediction accuracy caused by the difficulty of capturing time series laws and the highly non-stationary characteristics,this paper proposes a time series prediction model based on quadratic decomposition and GRU-attention.First,the complete ensemble empirical mode decomposition(CEEMDAN)is used to decompose the time series into several modal components with different characteristics,and the complexity of each component is quantified according to the sample entropy.Secondly,variational mode decomposition(VMD)is used to weaken the non- stationarity characteristics of high entropy components.TheGRU prediction model is then optimized using the attention mechanism.Finally,a GRU-attention model is established for each component to predict,and the prediction results of each component are added to obtain the final result.The experimental analysis proves that compared with other models, the model proposed in this paper can better capture the complex laws of the sequence,reduce the non-stationarity of the sequence,and have higher prediction performance,and its average absolute percentage error reached 2.9%,the coefficient of determination reached 0.891.

    参考文献
    相似文献
    引证文献
引用本文

高凯悦,牟 莉.基于二次分解和 GRU-attention的时间序列预测研究[J].国外电子测量技术,2023,42(2):80-87

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-16
  • 出版日期:
文章二维码