基于嵌入式视觉的无人机目标定位系统
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP181

基金项目:


UAV target positioning system based on embedded vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于传统算法的无人机目标定位系统精确度较低且容易受到光照条件干扰,针对该问题提出了一种基于嵌入式视觉 的无人机目标定位系统。使用深度可分离卷积替换YOLOv2原始模型中的Darknet-19 骨干网络,大幅减小模型体积;引入 RepVGG模块提取复杂特征,以提升检测精度。将模型部署到嵌入式端并进行了性能测试,结果表明改进YOLOv2 算法的网 络模型检测精度达到了96.7%,检测速度达到25 fps, 解决了传统算法难以处理光照变化的问题并且有明显的性能提升。设 计完成了上机试验,试验结果验证了无人机目标定位系统的有效性和可靠性。

    Abstract:

    The UAV target positioning system based on traditional algorithms has low accuracy and is easily interfered by light conditions.Aiming at this problem,a UAV target positioning system based on embedded vision is proposed.The Darknet-19 backbone in the original YOLOv2 is replaced with depthwise separable convolutions,which greatly reduces the model size.The RepVGG block is introduced to extract complex features to improve detection accuracy.The model is deployed to the embedded system and the performance test is carried out.The results show that the model detection accuracy of the improved YOLOv2 algorithm reaches 96.7%,and the detection speed reaches 25 fps,which solves the problem that the traditional algorithm is difficult to deal with illumination changes and has obvious performance improvement.Test on UAV is designed and completed,the test results verified the effectiveness and reliability of the UAV target positioning system.

    参考文献
    相似文献
    引证文献
引用本文

张君轶,陈仁文,刘 飞,萧 志 鹏.基于嵌入式视觉的无人机目标定位系统[J].国外电子测量技术,2023,42(2):171-176

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-16
  • 出版日期:
文章二维码