基于知识图谱的运动强度评估算法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP311

基金项目:

国家重点研发计划(2020YFC2006702,2020YFC2005503)、北京市朝阳区协同创新项目(CYXC2010) 资助


Exercise intensity assessment algorithms based on knowledge graph
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在运动中确定与掌握运动强度十分重要,适宜的运动强度能有效提高身体机能;强度过大会使身体机能衰退,甚至危 机生命安全。针对传统运动强度评估方法评估指标少、精度低的问题,提出了一种基于知识图谱的运动强度评估方法。首 先,通过BERT-CRF提取运动强度评估指征,在Neo4j数据库中建立了运动强度评估的知识图谱;其次,在RecGNNs 知识推 理的基础上,实现了针对不同年龄群体运动强度的个性化精准评估;最后,构建了运动强度评估系统。实验结果表明,基于知 识图谱的运动强度评估系统运行稳定、可靠,个性化评估的准确率可达到85.7%。

    Abstract:

    It is very important to determine and master the exercise intensity in exercise.Appropriate exercise intensity can effectively improve the body function.Too much intensity can make the body function decline,and even damage the health.Aiming atthe problems of few assessment indicators and low accuracy of traditional exercise intensity assessment methods,this paper proposed an exercise intensity assessment method based on knowledge graph.Firstly,the indica- tions of exercise intensity assessment were extracted by BERT-CRF,and the knowledge graph of exercise intensity as- sessment was established in the Neo4j database.Secondly,on the basis of RecGNNs knowledge reasoning,personalized and accurate assessment of exercise in-tensity for different age groups was realized.The exercise intensity assessment system based on this method can display the user's exercise data index and personalized exercise intensity assessment re- sults.Finally,the exercise intensity assessment system was constructed.The experimental results show that the exer- cise intensity assessment system based on knowledge graph was stable and reliable,and the accuracy of personalized as- sessment can reach 85.7%.

    参考文献
    相似文献
    引证文献
引用本文

赵 南 冰,宋 文 爱,雷 毅,王 青,杨 顺 民.基于知识图谱的运动强度评估算法研究[J].国外电子测量技术,2023,42(3):74-81

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-22
  • 出版日期:
文章二维码