基于IPSO-Gmapping算法的SLAM 系统研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP242.6

基金项目:

技术领域基金(2021-JCJQ-JJ-0726)项目资助


Research on SLAM system based on IPSO-Gmapping algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统Gmapping算法因粒子耗散导致定位精度不准确的现象,改进粒子群算法(IPSO)结合Gmapping算法(IP- SO-Gmapping)被提出。通过引入相似度测量参数和新的学习因子,IPSO 算法中粒子的全局开发能力得到提升,同时避免了 陷入“局部最优值”的现象。其次将IPSO算法应用于传统的Gmapping中,使得粒子向高似然区域移动,改善了粒子的分布状 态,这也使得IPSO-Gmapping算法表现出了极好的性能。分别使用公共数据集和实际场景进行验证,总体的平移旋转误差大 幅度降低。通过实验测试表明,所提出的IPSO-Gmapping算法使用更少的粒子在位姿估计准确性及建图精确性上优于传统 的Gmapping算法

    Abstract:

    In view of the inaccurate positioning accuracy of the traditional Gmapping algorithm due to particle dissipation, the IPSO-Gmapping algorithm was proposed.By introducing similarity measurement parameters and new learning factors,the global development ability of particles in IPSO algorithm has been improved.And the phenomenon of falling into a "local optimal value"is avoided.Secondly,the optimized IPSO algorithm is applied to the traditional Gmapping algorithm,which makes particles move to the high likelihood region and improves the distribution of particles,which also makes the IPSO-Gmapping algorithm show excellent performance.The overall translation and rotation error is greatly reduced by using the common dataset and the actual scene for verification.Through experimental tests,it is proved that the proposed IPSO-Gmapping algorithm uses fewer particles and is superior to the traditional Gmapping algorithm in the accuracy of pose estimation and mapping accuracy.

    参考文献
    相似文献
    引证文献
引用本文

安 赫,崔 敏,张 鹏,刘 鹏.基于IPSO-Gmapping算法的SLAM 系统研究[J].国外电子测量技术,2023,42(3):110-115

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-22
  • 出版日期:
文章二维码