基于改进的残差网络面部表情识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN2

基金项目:

四川省科技计划项目(2020YFSY0027,2022YFSY0056) 资助


Facial expression recognition based on improved residual network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决人脸表情识别中存在的对关键信息获取能力不足、识别率偏低、模型容易出现过拟合等问题,以ResNet18 作为基本网络进行改进得到一个新的表情识别模型(IERNet) 。IERNet 通过引入 ECA 注意力机制构建出两种不同的注意力 残差单元,并组成注意力残差模块,从而增强对深层的表情关键特征的提取能力;又引入 Iception模块来提取图像的多尺度浅 层信息,通过同时引入这两个模块的方式增强了网络的鲁棒性、提升了模型的识别率;最后使用全局平均池化结合Dropout 技 术取代全连接层,可以有效防止模型的过拟合问题同时还能简化模型。通过实验数据可知,在公开表情数据集CK+ 和 FER2013上取得了不错的成绩,准确率分别达到了97.778%和73.558%。

    Abstract:

    In order to solvethe problems existing in facial expression recognition,such as insufficient ability to obtain key information,low recognition rate and easy to overfit the model,a new facial expression recognition model(IERNet)was developed by using ResNet18 as the basic network.By introducing ECA attention mechanism,IERNet constructs two different kinds of attention residual units and forms an attention residual module,so as to enhance the ability to extract the key features of deep expressions.Iception module is introduced to extract the multi-scale shallow information of the image.By introducing the two modules at the same time,the robustness of the network is enhanced and the recognition rate of the model is improved.Finally,we use the global average pool combined with Dropout technology to replace the full-connection layer,which can effectively prevent the overfitting problem of the model and simplify the model. According to the experimental data,this paper has achieved good results in the public expression data sets CK+and FER2013,with the accuracy rate reaching 97.778%and 73.558%respectively.

    参考文献
    相似文献
    引证文献
引用本文

兰江海,林国军,游 松,周顺勇,黄 丹.基于改进的残差网络面部表情识别[J].国外电子测量技术,2023,42(3):123-130

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-22
  • 出版日期:
文章二维码