基于改进型YOLOv5s 的印刷线路板瑕疵检测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

山西省基础研究计划(202103021224201)、国家自然科学基金(61671414)项目资助


Printed circuit board blemishes detection based on the improved YOLOv5s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着集成电路集成度的提升,印刷线路板的工业复杂度逐渐提升,制造过程中产生的瑕疵也更加微小复杂。针对目 前传统图像处理算法难以准确检测到各种微小瑕疵的问题,提出了一种基于改进型 YOLOv5s的印刷线路板瑕疵检测识别算 法。首先更改原先网络的三尺度检测层,用检测更小目标的检测层替换原本的大目标检测层,加强模型对微小目标的检测精 度;同时使用K-means++ 算法重新聚类先验框;然后将PANet 网络调整为BiFPN 网络,使用可学习权重评估每个特征的重 要性来加强特征融合;最后在C3 模块中融入 SENet, 使网络有选择地关注信息特征并过滤冗余信息。结果表明,改进后的网 络模型检测精度达到97.83%,召回率达到95.73%,并且对比原始网络误检、漏检率大大降低,完全满足工业检测要求。

    Abstract:

    With the improvement of integrated circuit integration,the industrial complexity of printed circuit boards has gradually increased,and the defects in the manufacturing process have become more minor and complex.Aiming at the problem that the traditional image processing algorithm is difficult to accurately detect various minor defects,a defect detection and recognition algorithm for printed wiring board based on the improved YOLOv5s is proposed.Firstly,the three-scale detection layer of the original network is changed,and the original large target detection layer is replaced with a detection layer that detects smaller targets,so as to strengthen the detection accuracy of the model for small and medium-sized targets.At the same time,the K-means++algorithm is used to recluster the prior boxes.The PANet network is then adjusted to a BiFPN network,and the importance of each feature is evaluated using learnable weights to strengthen feature fusion.Finally,SENet is incorporated into the C3 module,allowing the network to selectively focus on information characteristics and filter redundant information.Final results indicated that the detection precision of the method of this article attain 97.83%and the recall rate is 95.73%.the*spur'false detection and‘mouse_bite'missed detection rate is greatly reduced compared with the original network,which completely satisfy the industrial detection requirements

    参考文献
    相似文献
    引证文献
引用本文

朱 宏 禹,韩 建 宁,徐 勇.基于改进型YOLOv5s 的印刷线路板瑕疵检测[J].国外电子测量技术,2023,42(3):152-159

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-22
  • 出版日期:
文章二维码