基于YOLOv5s 的轻量化可回收饮料瓶颜色识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

国家自然科学基金青年科学基金(11502098)、江苏省科技成果转化专项资金(BA2017090)、江苏省青蓝工程人才 项目资助


Lightweight recyclable bottle color recognition based on YOLOv5s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对不同颜色的可回收饮料瓶回收价值不同,进而需要解决颜色识别分选问题,提出一种基于YOLOv5s 的轻量化模 型并配合DELTA 并联机器人分选设备进行智能识别分选。模型减少了原 Backbone中C3 数量,并使用1×1的卷积核代替 了C3 和Conv 模块部分3×3的卷积核,采用GhostConv替代传统Conv,CIOU 损失增加了检测框尺度、长和宽的损失,提高 了矩形框回归效果,选择CIOU Loss作为 bounding box的损失函数,通过对其他传统模型对比实验,验证了模型的有效性。 结果表明,参数量和计算量相较原模型分别减少了33.80%和36.84%,对回收饮料瓶颜色的识别时间达到了0.008 s, 识别图 片速度125张/s, 识别精度达到了97%。较传统模型,改进YOLOv5s模型识别准确率更高,识别速度更快。

    Abstract:

    For different colors of recyclable beverage bottles with different recycling values and the need to solve the color identification sorting problem,a lightweight model based on YOLOv5s and with DELTA parallel robot sorting equipment is proposed for intelligent identification sorting.This model reduces thenumber of C3 in the original Backbone and uses 1×1 convolution kernel instead of C3 and 3×3 convolution kernel in the Conv module part.GhostConv is used instead of traditional Conv.CIOU Loss increases the Loss of detection box scale,length and width to improve the rectangular box regression effect.CIOU Loss is chosen as the bounding box loss function,and the effectiveness of this model is verified by comparing experiments with other traditional models.The results show that the number of parameters and computation volume are reduced by 33.80%and 36.84%,respectively,compared with the original model,and the recognition time for the color of recycled beverage bottles reaches 0.008 s,which can recognize 125 images per second,and the recognition accuracy reaches 97%.Compared with the traditional model,the improved YOLOv5s model has higher recognition accuracy and faster recognition speed.

    参考文献
    相似文献
    引证文献
引用本文

王 振,方 海 峰,曹 晋,吴 群 彪.基于YOLOv5s 的轻量化可回收饮料瓶颜色识别[J].国外电子测量技术,2023,42(3):160-166

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-22
  • 出版日期:
文章二维码