融合光谱特征和超像素的遥感建筑物分级提取
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP751.1

基金项目:

国家自然科学基金(61661009)项目资助


Remote sensing building classification extraction by fusion of spectral features and superpixels
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前,大多数基于深度学习提取建筑物是采用语义分割的方式,没有考虑建筑物几何特性,而传统方法在对遥感建筑 物提取时只考虑其灰度特征,都难以有效提取。针对该问题对光谱信息进行了研究,提出了融合光谱特征和超像素的建筑物 提取方法。首先基于分水岭变换产生许多形状大小不一的超像素子区域;然后利用建筑物的光谱特征对建筑物超像素进行 合并,从而实现对遥感影像建筑物的初提取;在此基础上剔除已提取出的建筑物,然后根据几何特征选择滑动领域操作抑制 噪声;最后根据最大类间方差(Otsu)对遥感影像建筑物进行后提取。所处理的遥感影像建筑物包括荒地、山地、城郊、城市4 种类型的区域,通过和经典算法对比验证,实验结果表明,该算法在遥感建筑物提取上有一定优越性。

    Abstract:

    At present,most deep learning-based building extraction is based on semantic segmentation without considering building geometric characteristics,while traditional methods only consider their grayscale features in remote sensing building extraction,both of which are difficult to extract effectively.To address this problem,spectral information is studied and a building extraction method that fuses spectral features and super pixels is proposed.The method firstly generates many subregions with different shapes and sizes of superpixels based on the watershed transform;then the spectral features of buildings are used to merge the superpixels of buildings to achieve the primary extraction of buildings from remote sensing images;on this basis,the extracted buildings are rejected,and then the sliding field operation is selected to suppress the noise according to the geometric features;finally,the buildings are post- extracted from remote sensing images according to the maximum inter-class variance(Otsu).Finally,the buildings are post-extracted according to the maximum inter-class variance(Otsu).The buildings of remote sensing images processed in this paper include four types of areas:wasteland,mountainous area,suburban area and urban area.By comparing and verifying with the classical algorithm,the experimental results show that the algorithm is superior in remote sensing buildings extraction.

    参考文献
    相似文献
    引证文献
引用本文

覃泓宁,李自立.融合光谱特征和超像素的遥感建筑物分级提取[J].国外电子测量技术,2023,42(3):182-188

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-22
  • 出版日期:
文章二维码