单聚合 YOLO航拍小目标检测算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN2

基金项目:


Single aggregation YOLO algorithm for airborne small target detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    使用无人机采集的航拍图中存在背景复杂、目标密集、目标重叠等诸多问题,这都对现有的目标检测网络提出了挑 战。以YOLOv5 为基础进行改进,修改原有的BackBone网络,嵌入改进后的单聚合(OSA) 模块,解决因为网络深度造成的梯 度衰减问题;针对原网络结构对小目标的定位不准确,获得的信息不充分问题,增加一个160×160的小目标检测层应对小目 标难以检测问题,同时修改特征融合网络丰富语义信息;最后改进原有的损失函数CIoU, 长宽不再是一个统一的整体计算损 失,而是分开优化,提高预测方框的准确度。算法在VisDrone2019无人机航拍数据集上实验结果表明,平均精度均值(mAP) 与原算法相比提升了5.2%,检测帧率达到了45 fps, 训练模型大小为18.9 MB。

    Abstract:

    There are many problems in the aerial photos collected by UAV,such as complex background,dense targets, overlapping targets,which pose a challenge to the existing target detection network.Based on YOLOv5,the original BackBone network is modified and the improved OSA module is embedded to solve the gradient attenuation problem caused by network depth.In view of the inaccurate positioning of small targets in the original network structure and the insufficient semantic information obtained,a 160×160 small arget detection layer is added to deal with the problem of difficult detection of small targets,and the feature fusion network is modified to enrich semantic information.Finally, the original loss function CIoU is improved.The length and width are no longer a unified whole to calculate the loss,but are optimized separately to improve the accuracy of the prediction box.The experimental results of this algorithm on VisDrone 2019 UAV aerial photography data set show that compared with the original algorithm,mAP has improved by 5.2%,the detection frame rate has reached 45 fps,and the training model size is 18.9 MB.

    参考文献
    相似文献
    引证文献
引用本文

杨辉羽,李海明.单聚合 YOLO航拍小目标检测算法[J].国外电子测量技术,2023,42(4):131-140

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-29
  • 出版日期:
文章二维码