基于改进SSD 的青瓜检测算法
CSTR:
作者:
中图分类号:

TP183

基金项目:

2021年广东省教育厅普通高校重点领域专项(421N34)、2020年广东省普通高校创新团队项目一机器人与智能装 备团队(2020KCXTD035)项目资助


Cucumber detection algorithm based on improved SSD
Author:
  • 摘要
  • | |
  • 访问统计
  • | |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对复杂近色背景下青瓜目标识别率低、定位效果不佳等问题,提出一种基于SSD 的循环融合特征增强(CFFE-SSD) 目标检测模型。首先,对 SSD 的前4个有效特征层进行循环特征融合,使低层特征层和高层特征层的信息得到有效利用;其 次,针对青瓜目标的特殊长宽比以及重叠现象,使用K-means算法改进先验框的默认尺寸以及长宽比,提出以DIoU-NMS替 换普通NMS; 最后,将ECA 注意力机制引入循环特征融合模块,增强网络特征提取能力。实验结果表明,改进CFFE-SSD 模 型 AP@0.5 达到了96.63%,提升了4.61%;AP@0.75 达到了89.02%,提升了7.14%,检测速度达到144 fps, 边框回归精 度更高,能有效满足青瓜自动采摘的需求。

    Abstract:

    Aiming at the problems of low target recognition rate and poor localization effect of cucumber in complex near color background,a cyclic fusion feature enhanced based on SSD(CFFE-SSD)target detection model is proposed.First, cyclic feature fusion is performed on the first four effective feature layers of SSD,so that the information of low-level feature layers and high-level feature layers can be effectively used.Secondly,in the view of special aspect ratio and over lapping phenomenon of the cucumber target,the K-means algorithm is used to improve the default size and aspect ratio of the a priori frame,and meanwhile,DIoU-NMS is proposed to replace ordinary NMS.Finally,the efficient channel attention module is introduced into the cyclic feature fusion module to enhance the feature extraction ability of the network.The ex-perimental results show that the AP@0.5 of the improved CFFE-SSD model proposed in this paper reaches 96.63%,an increase of 4.61%,and the AP@0.75 reaches 89.02%,an in-crease of 7.14%.The detection speed reaches 144 fps,and the frame regression accuracy is higher.Effectively meet the needs of automatic cucumber picking.

    参考文献
    引证文献
引用本文

曾 乾,李 博.基于改进SSD 的青瓜检测算法[J].国外电子测量技术,2023,42(4):158-165

复制
分享
文章指标
  • 点击次数:27
  • 下载次数: 144
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2024-10-29
文章二维码
×
《国外电子测量技术》
2025年投稿方式有变