基于FEEMD算法对小样本电磁信号的识别与分类
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN911

基金项目:

山西省基础研究计划项目(202203021212157)、国家自然科学基金(62201522)项目资助


Recognition and classification of small sample electromagnetic signals based on FEEMD algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当前小样本条件下电磁信号识别算法在不同信噪比下识别准确率较低的问题,提出了一种模糊熵限阈经验模态 分解(fuzzy entropy empirical mode decomposition,FEEMD)算法进行电磁信号特征提取,提取表征明显的数据展开短时傅里 叶变换(short time Fourier transform,STFT),然后选用Transformer模型分类识别各制式信号。该算法采用8种不同制式 的电磁信号分别在-10、-5、0、5、10 dB这5种信噪比下的识别准确率,确定了该网络的最优超参数。仿真结果表明,在5种 信噪比下,2FSK、AM、ASK、SSB这4种调制信号识别率均超过90%,QAM16、QPSK和OFDM的准确率由30%~40%提升 到了70%以上,由此表明了该算法的有效性和可实施性。

    Abstract:

    Aiming at the problem that the identification accuracy of current small sample electromagnetic signal identification algorithm is low under different SNR,a fuzzy entropy empirical mode decomposition(FEEMD)algorithm is proposed to extract electromagnetic signal feature.Extract the data with obvious characterization to expand short-time Fourier transform(STFT),and then select Transformer model to classify and identify each standard signal.The algorithm uses the recognition accuracy of 8 kinds of communication signals under the five SNR of-10,-5,0,5 and 10 dB respectively to determine the optimal hyperparameters of the network.Simulation results show that under the five SNR,the recognition rate of the four modulated signals(2FSK,AM,ASK and SSB)is more than 90%,and the accuracy rate of QAM16,QPSK and OFDM is increased from 30%~40%to more than 70%,which shows the effectiveness and practicability of the algorithm.

    参考文献
    相似文献
    引证文献
引用本文

郭钰荣,姚金杰,白建胜,温雪芳.基于FEEMD算法对小样本电磁信号的识别与分类[J].国外电子测量技术,2023,42(4):166-172

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-29
  • 出版日期:
文章二维码