改进的 DeepLabV3+指针式仪表图像分割算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金(61440023)项目资助


Improved image segmentation algorithm of DeepLabV3+ pointer meter
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有的仪表自动化读数算法占用空间大、推理速度较慢以及不能有效分割图像中密集细小目标的问题,提出改 进的 DeepLabV3+指针式仪表分割算法。首先以轻量化的 MobileNetV2来构建网络主干达到降低参数量和推理权重、提高 检测速度的目的。其次通过分块并归策略设计 CSP-ASPP 结构,在保证网络性能的同时降低参数量。之后使用改进后的 SKFF模块通过自注意力机制以非线性方式融合多尺度特征,将原网络解码器中的二尺度特征融合变为四尺度特征融合。最 后使用交叉熵损失联合加权的 Dice损失作为网络的总损失函数,解决仪表分割中各类别像素分布不均的问题。最后通过实 验证明,改进后的 DeepLabV3+算法在仪表分割数据集上的平均交并比(mIoU)和平均像素准确率(mPA)达到了89.3%和 94.8%,相对原网络分别提高了0.7%、0.6%,参数量和推理权重却仅有原网络的约7%,同时在 GPU 和 CPU 上的推理速度 分别达到91和16fps,解决了嵌入式设备部署困难的问题,达到了实时检测的要求,提高了仪表自动化读数的效率。

    Abstract:

    Aiming at the problems that the existing automatic instrument reading algorithm occupies a large space, thereasoning speed is slow, and it cannot ellectively segment the dense and small obiects in the image, an improvecDeepLabV3+ pointer instrument segmentation algorithm is proposed, Firstly, MobileNetV2 is used to build thenetwork backbone to reduce the amount of parameters and inference weight, and improve the detection speed. Secondlythe CSP-ASPP structure is designed through the block merge strategy to reduce the amount of parameters while ensuringthe network performance, Then, the improved SKFF module is used to fuse multi-scale features in a non-linear mannerthrough the self-attention mechanism, and the two-scale feature fusion in the original network decoder is changed to fourscale feature fusion, Finally, the Dice Loss iointly weighted by cross-entropy loss is used as the total loss function of thenetwork to solve the problem of uneven distribution of pixels in each category in instrument segmentation. Finally, it isproved by experiments that the improved DeepLabV3 + average intersection ratio (mloU) and mean pixel accuracy(mPA) reached 89. 3% and 94. 8%, respectively, increased by 0.7% and 0. 6% compared with the original network, butthe amount of parameters and inference weight is only about 7% of the original network, while the inference speed onGPU and CPU reaches 91 and 16 frames/s, respectively. Meet the reguirements of realtime detection, which solves theproblem of difficult deployment of embedded devices and improves the efficiency of automatic instrument reading.

    参考文献
    相似文献
    引证文献
引用本文

杨 武,胡 敏,常 鑫,赵昕宇,余华云.改进的 DeepLabV3+指针式仪表图像分割算法[J].国外电子测量技术,2024,43(1):10-19

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-28
  • 出版日期:
文章二维码