融合2维卷积与注意力以预测PM2.5浓度的S-TCN模型
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

X513

基金项目:

2020年河北省省级科技计划(20477703D)项目资助


S-TCN model fusing 2D convolution and attention to predict PM₂.s concentrations
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统预测模型对 PM₂s 浓度预测精度较低、可解释性差的缺陷,提出一种融合2维卷积层(2D convolution)和注 意力层的时空卷积网络预测模型(spatio-2D-temporal convolutional networks attention,S-2D-TCNA)。选取北京市2014年5 月1日~2015年4月30日的36个监测站点逐小时空气质量和气象数据,通过对多个站点时空相关性分析,将符合相关性阈 值的监测站数据输入至卷积进行升维再降维的处理方式,得出具有时空序列的输入特征;将注意力融入时间卷积网络预测模 型,用于预测未来1 h 的中心监测站 PM₂s 浓度。在模型训练优化参数过程中,通过Adam 来训练深度学习模型的参数,然后 使用贝叶斯优化来调整模型的超参数,这种方法能找到模型的最佳参数,使其均方根误差、平均绝对误差分别减少3.791%和 5.576%,拟合优度增大0.67%;在质量方面,所提出的 S-Conv2D-TCNA 模型均方根误差、平均绝对误差和拟合优度分别为 16.0209、10.6100和0.9428,该预测模型在准确性和稳定性方面优于基线模型。结果表明,该预测模型空气污染的预警、区 域预防和控制方面大有可为。

    Abstract:

    Aiming at the shortcomings of the traditional prediction model for PM₂s concentration prediction with low accuracy and poor interpretability,a spatio-temporal convolutional network prediction model integrating 2D convolution and attention(S-2D-TCNA)layers is proposed.Hourly air quality and meteorological data from 36 monitoring stations in Beijing from May 1,2014,to April 30,2015,are selected.Through the analysis of spatio-temporal correlations among multiple stations,the monitoring station data that meet the correlation threshold are inputted into a convolutional network that adopts a dimensionality expansion and reduction approach to obtain input features with spatio-temporal sequences.Attention is incorporated into the Temporal convolutional network model for predicting the PM₂s concentrations at the central monitoring station for the next hour.In the process of optimizing the parameters for model training,the parameters of the deep learning model are trained by Adam,and then Bayesian optimization is used to adjust the hyper-parameters of the model,and this method finds the best parameters of the model,which reduces the root mean squared error and mean absolute error by 3.791%and 5.576%,respectively,and increases the goodness of fit by 0.67%.In terms of quality,the S-Conv2D-TCNA model has a mean root mean square error,mean absolute error and goodness of fit are 16.0209,10.6100 and 0.9428,respectively,and this prediction model is better than the baseline model in terms of accuracy and stability.The results show that the forecasting system is promising in the early warning, regional prevention,and control of air pollution.

    参考文献
    相似文献
    引证文献
引用本文

李春辉,张瑛琪,孙 洁.融合2维卷积与注意力以预测PM2.5浓度的S-TCN模型[J].国外电子测量技术,2024,43(1):77-86

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-28
  • 出版日期:
文章二维码