基于改进 ResNet18 的干香菇等级识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

河南工业大学创新基金(2022ZKCJ03)、河南省科技研究计划(2013000210100)项目资助


Dried shiitake mushroom grade recognition based on improved ResNet18
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决干香菇等级识别技术复杂及识别精度不高的问题,提出了一种基于残差神经网络 ResNet18 的干香菇等级识 别方法。首先将传统的 ResNet18 中 Stem 的7×7卷积层替换为3个3×3卷积层串联,保证在感受野保持不变的情况下进一 步减小计算量;其次针对残差块中线性变换和非线性变换不足的问题,引入融合非对称卷积和 h-swish 激活函数,增加了模型 的复杂性,使其能够进行更深层次的特征学习;最后在ResNet18 骨干网络中引入高效通道注意力机制,加强模型提取特征的 能力;实验结果表明,改进后的 ResNet18 网络模型准确度达97.04%,相比 ResNet18 网络模型方法提升了4.81%,且性能优 于VGG16 、MobileNetV2 、DenseNet121 、ResNet34 等网络模型方法,可提高干香菇等级的识别精度,单幅图像的检测时间为 5.91 ms,对干香菇智能分拣过程中的等级识别具有借鉴意义。

    Abstract:

    To solve the problems of complexity and low recognition accuracy of dried shiitake mushroom grade recognition technology,a method of dried shiitake mushroom grade recognition based on residual neural network ResNet18 is proposed.Firstly,the 7×7 convolutional layer of Stem in the traditional ResNetl8 is replaced by three 3×3 convolutional layers in series,which ensures that the computational amount is further reduced while the sensory field remains unchanged.Secondly,to address the problem of insufficient linear and nonlinear transformations in the residual block,fused asymmetric convolution and h-swish activation function are introduced,which increases the complexity of the model and enables it to carry out a deeper level of feature learning.Finally,an efficient channel attention mechanism is introduced into the ResNetl8 backbone network to strengthen the ability of the model to extract features.The experimental results show that the improved ResNet18 network model has an accuracy of 97.04%,which is 4.81% higher compared to the ResNetl8 network modeling method,and outperforms VGG16,MobileNetV2,DenseNet121, ResNet34 and other network model methods,which can improve the recognition accuracy of dried shiitake mushroom grades,and the detection time of a single image is 5.91 ms,which is useful for grade recognition in the intelligent sorting process of dried shiitake mushrooms.

    参考文献
    相似文献
    引证文献
引用本文

王 莉,董鹏豪,王 瞧,牛群峰.基于改进 ResNet18 的干香菇等级识别[J].国外电子测量技术,2024,43(1):117-125

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-28
  • 出版日期:
文章二维码