基于时序分析及 CNN-BiLSTM-AM 的阶跃型 滑坡位移预测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

P642.22

基金项目:

甘肃省教育科技创新项目(221jyibgs-05)、甘肃省军民融合专项(2020JG01)、甘肃省重点研发计划(21YF5GA158) 项目资助


Displacement prediction of step-like landslide based on temporal analysis and CNN-BiLSTM-AM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统基于递归神经网络的模型对阶跃型滑坡位移预测能力不足,为解决这一问题,提出一种基于时序分析及卷积神 经网络-双向长短期记忆-注意力机制(CNN-BiLSTM-AM) 的滑坡位移动态预测模型。首先使用变分模态分解方法(VMD) 将 序列分解为趋势项、周期项和随机项。采用二次指数平滑法拟合趋势项位移,然后引入最大互信息系数法(MIC) 计算各类影 响因子与周期项位移相关性,对于周期项和随机项位移采用CNN-BiLSTM-AM 混合模型进行多因素和单因素预测,最终累 加各分量预测值得到累积位移预测结果。实验结果表明,所提方法在最终累计位移预测结果中拟合系数 R² 达0.984 和 0.987,平均绝对误差(MAE) 分别为5.334和3.947,均方根误差(RMSE) 分别为6.196和4.941,相比卷积神经网络-长短期 记忆(CNN-LSTM) 、麻雀搜索算法-核极限学习机(SSA-KELM) 和 NARX 方法,所提方法能够更好的捕捉监测数据的时间相 关性,预测精度显著提高,可为阶跃型滑坡预警及防治工作提供参考。

    Abstract:

    Traditional models based on recurrent neural networks have insufficient predictive capabilities for stepwise landslide displacement.To address this issue,a dynamic landslide displacement prediction model based on time series analysis and CNN-BiLSTM-AM is proposed.Firstly,the sequence is decomposed into trend components,periodic components,and random components using the variational mode decomposition(VMD)method.The trend component displacement is fitted using the second-order exponential smoothing method.Then,the maximum mutual information coefficient(MIC)method is introduced to calculate the correlation between various influencing factors and periodic component displacement.For both periodic and random component displacements,a hybrid CNN-BiLSTM-AM model is used for multi-factor and single-factor prediction.Finally,the predicted values of each component are accumulated to obtain the cumulative displacement prediction results.Experimental results show that the proposed method achieves fitting coefficients R²of 0.984 and 0.987 in the final cumulative displacement prediction results,with average absolute errors(MAE)of 5.334 and 3.947,and root mean square errors(RMSE)of 6.196 and 4.941,respectively.Compared to CNN-LSTM,SSA-KELM,and NARX methods,the proposed method better captures the temporal correlations in monitoring data,significantly improving prediction accuracy,and providing valuable references for stepwise landslide early warning and mitigation efforts.

    参考文献
    相似文献
    引证文献
引用本文

杨进昆,党建武,杨景玉,岳 彪.基于时序分析及 CNN-BiLSTM-AM 的阶跃型 滑坡位移预测[J].国外电子测量技术,2024,43(1):126-134

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-28
  • 出版日期:
文章二维码