基于 VMD-改进最优加权法的短期负荷变权 组合预测策略
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM715

基金项目:

河北省科技支撑计划(15212105D) 项目资助


Short-term load variable weighted combination prediction strategy based on VMD-improved optimal weighting method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提升短期电力负荷预测精度,提出了一种变权组合预测策略。首先,为了降低负荷数据的不平稳度,使用变分模态 分解(variational mode decomposition,VMD)将负荷数据分解成了高频、低频、残差3种特征模态分量。其次,充分计及负荷数 据的时序特点,参考指数加权法原理设计自适应误差重要性量化函数,并结合组合模型在时间窗口内的历史负荷数据的均方 预测误差设计改进最优加权法的目标函数和约束条件,以完成子模型的准确变权。最后,针对波动较强的高频分量选定极端 梯度提升(XGBoost) 和卷积神经网络-长短期记忆(CNN-LSTM) 模型并使用改进最优加权法进行组合预测、低频分量使用多 元线性回归(MLR) 模型预测、残差分量使用 LSTM 模型预测,叠加各模态分量的预测结果,实现了短期负荷数据的准确预 测。实验结果表明,使用策略组合模型的平均绝对百分比误差为4.18%。与使用传统组合策略的组合模型相比,平均绝对百 分比预测误差平均降低了0.87%。

    Abstract:

    To increase short-term power load forecasting accuracy,this paper proposes a weighted combination prediction strategy.Firstly,in order to reduce the instability of load data,the variational mode decomposition(VMD)is used to decompose the load data into three feature mode components:high-frequency,low-frequency,and residual.Secondly, considering the temporal characteristics of the load data,an adaptive error importance quantification function is designed based on the principle of exponential weighting,and the objective function and constraint conditions of the improved optimal weighting method are designed based on the mean-square prediction error of the historical load data within the time window,in order to achieve accurate weight variation of the submodels.Finally,XGBoost and CNN-LSTM models are selected for the high-frequency components with strong fluctuations,and the improved optimal weighting method is used for combination prediction.The MLR model is used to predict the low-frequency components,and the LSTM model is used to predict the residual components.By superimposing the prediction results of each mode component,accurate prediction of short-term load data is achieved.The experimental results show that the average absolute percentage error of the combined model using this strategy is 4.18%.Compared to the combined model using existing combination strategies,the average absolute percentage prediction error is reduced by 0.87%.

    参考文献
    相似文献
    引证文献
引用本文

李志军,徐 博,杨金荣,宁阮浩.基于 VMD-改进最优加权法的短期负荷变权 组合预测策略[J].国外电子测量技术,2024,43(2):1-8

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-29
  • 出版日期:
文章二维码