基于改进 YOLOv5 的港口集装箱损伤检测算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

国家自然科学基金委青年基金(42205078)、高校哲学社会科学研究一般项目(2022SJYB0979)、苏高教会“高质量 公共课教学改革研究”专项课题(2022JDKT138)、无锡学院教改课题(JGZD202107-3-11)、教育部产学合作协同育人项目 (220703806203838,220702116135122)、2022江苏省大学生创新创业训练计划(202213982054Y)项目资助


Damage detection algorithm of port container based on improved YOLOv5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对港口复杂环境背景下,不同尺度间多种类集装箱损伤目标检测精度低的问题,提出一种基于改进 YOLOv5 的港 口集装箱损伤检测算法。通过使用一维卷积改进卷积块注意力机制(CBAM) 中空间注意力模块的池化操作,后设计残差结 构,并验证在不同位置引入改进的CBAM 基本块对模型性能的影响,探索尽量减小复杂背景对检测结果影响的最佳方案及融 合位置;为有效解决不同集装箱损伤图像尺度特征变换较大的问题,依据双向特征融合网络(Bi-FPN) 结构思想,对颈部特征 融合网络进行改进,在不过多增加计算量的情况下,更好地增强网络对多尺度目标的特征融合能力;最后将 EIOU Loss 替换 GIOU Loss作为算法的损失函数,在降低算法边界框回归损失的同时提高算法的检测精度。实验结果表明,改进 YOLOv5 算 法的平均检测精度达到了98.32%,较原YOLOv5 目标检测算法提高了4.28%,同时保证了检测速度,验证了所提出算法的 有效性,对港口企业高精度验箱的工业部署有重要意义。

    Abstract:

    Aiming at the problem of low detection accuracy of multiple types of container damage targets at different scales in the complex port environment,a port container damage detection algorithm based on improved YOLOv5 is proposed.By using one-dimensional convolution to improve the pooling operation of spatial attention module in CBAM attention mechanism,the residual structure was designed,and the influence of introducing improved CBAM blocks in different positions on the model performance was verified,to explore the best scheme and fusion location to minimize the influence of complex background on detection results.In order to solve the problem of significant change in feature transformation of different container damage images,the neck feature fusion network was improved based on the Bi-FPN network structure,it can enhance the feature fusion ability of the network to multi-scale targets without increasing the amount of calculation too much.Finally,EIOU Loss was used to replace GIOU Loss as the loss function of the algorithm,which reduced the regression loss of the bounding box and improved the detection accuracy of the algorithm. The experimental results show that the average detection accuracy of the improved YOLOv5 model have reached 98.32%,which is 4.28%higher than the original YOLOv5 algorithm.At the same time,it ensures the detection speed and verifies the validity of the algorithm proposed in this paper,which is of great significance to the industrial deployment of high-precision container inspection in port enterprises.

    参考文献
    相似文献
    引证文献
引用本文

裴晓芳,刘菁宇,柏 雪,周 进,衡晓钰.基于改进 YOLOv5 的港口集装箱损伤检测算法[J].国外电子测量技术,2024,43(2):16-25

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-29
  • 出版日期:
文章二维码