基于改进 U-Net 的金具图像小样本识别算法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金(61971253)、山东省自然科学基金(ZR2020MF011) 项目资助


Research on few-shot recognition algorithm of fittings image based on improved U-Net
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电力金具巡检是保证电网安全运行的关键任务。针对因金具样本类别不平衡、金具图像背景复杂而导致的误检、漏 检问题,提出了一种改进U 型网络 (U-shaped network,U-Net)的检测方法。首先,通过生成对抗网络生成虚拟金具样本扩 充数据集,解决数据集中样本类别不平衡的问题;然后,提出一种前景增强方法,在网络输出的特征图中加入背景掩膜,并优 化损失函数;最后,将注意力机制嵌入U-Net, 以提高模型在复杂背景下提取金具特征的能力。经实验证明,改进算法对电力 金具目标的检测效果良好,其金具检测准确率达到98.82%,平均交并比达到83.94%,精确率达到91.01%,召回率达到 86.18%,平均精度均值达到89.73%。改进算法不仅可应用于正常金具的检测,还有效适用于生锈金具的检测,为电力金具 智能化检测提供了一种新思路。

    Abstract:

    Power fittings inspection is a critical task in ensuring the safe operation of the power grid.To address the challenges of imbalanced fitings samples and complex background images leading to false and missed detections,an improved detection method based on the U-Net is presented.Firstly,a generative adversarial network is employed to generate synthetic fittings samples,alleviating the issue of imbalanced sample distribution in the dataset.Secondly,a foreground enhancement method is proposed,which applies a background mask to the feature map generated by the network and optimizes the corresponding loss function.Finally,an attention mechanism is integrated into the U-Net network to enhance the model's ability to extract fittings features in complex backgrounds.Experimental results demonstrate the effectiveness of the proposed algorithm in detecting fittings objects,the fittings detection accuracy reached 98.82%,the mean intersection over union reached 83.94%,the precision reached 91.01%,the recall reached 86.18%,and the mean average precision reached 89.73%.The proposed algorithm is not only applicable to normal fittings,but also effective in detecting rusty fittings.This approach provides a new perspective for the intelligent detection of fittings.

    参考文献
    相似文献
    引证文献
引用本文

谢智慧,王文爽,刘雪峰.基于改进 U-Net 的金具图像小样本识别算法研究[J].国外电子测量技术,2024,43(2):51-58

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-29
  • 出版日期:
文章二维码