基于用户意愿度 D2D 协助的工业物联网资源分配
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN922.1

基金项目:

国家重点研发计划子课题(2020YFC1511704)


Resource allocation of industrial internet of things based on user willingness D2D assistance
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对终端用户产生计算任务大小动态变化以及在工业物联网场景下业务的低时延、低能耗需求,提出了一种基于用 户意愿度的 D2D(device to device)协助的工业物联网资源分配模型。首先在用户层,每隔时隙t, 由概率分布函数更新用户成 为资源给予端的意愿度,在移动边缘计算(MEC) 服务器层,使 MEC 具有决策功能,能对终端上传任务做出判断,寻找出合适 的 MEC 处理;其次基于K-means 聚类算法,将终端产生的任务匹配到对应的层进行处理;最后在资源分配阶段,为解决 Q- learning 里 Q 表难以实时更新的问题,提出N-DQN 算法,使用双层神经网络相互拟合。仿真表明所提策略较传统方法,系统 能耗降低约10%,系统时延降低约12%。

    Abstract:

    In view of the dynamic changes in the size of computing tasks generated by end users and the low-latency and low-energy consumption requirements of services in industrial IoT scenarios,a D2D-assisted industrial IoT resource allocation model based on user willingness is proposed.First,at the user layer,every time slot t,the probability distribution function is used to update the user's willingness to become a resource giver.At the mobile edge computing (MEC)server layer,the MEC is given a decision-making function that can make judgments on terminal upload tasks and find the appropriate solution. MEC processing;secondly,based on the K-means clustering algorithm,the tasks generated by the terminal are matched to the corresponding layer for processing;finally,in the resource allocation stage, in order to solve the problem that the Q table in Q-learning is difficult to update in real time,N-DQN is proposed algorithms,fit each other using two-layer neural networks.Simulation shows that the proposed strategy reduces system energy consumption by 10%and system delay by 12%compared with traditional methods.

    参考文献
    相似文献
    引证文献
引用本文

邓集检,张月霞.基于用户意愿度 D2D 协助的工业物联网资源分配[J].国外电子测量技术,2024,43(2):193-200

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-29
  • 出版日期:
文章二维码