Abstract:A high-precision ADC system design and modeling method is proposed to address the high design complexity and long simulation iteration time issues of traditional analog to digital converter(ADC).This method takes a 10 bit 50 MHz pipeline ADC as an example. Firstly,a separate sampling architecture is selected for the s-domain transformation theory analysis of the circuit.Secondly,the expressions of various non ideal noise in the circuit are accurately derived,and parameter optimization is carried out based on the operational amplifier power consumption indicators in the system.Finally,models were established in MATLAB and Cadence software for 100 points Monte Carlo simulation.The simulation results showed that under the TSMC 180 nm process mismatch,the effective bit of the pipeline ADC reached 9.70 bit,the spurious free dynamic range was maintained around 76 dB,the differential nonlinearity was within 0.3 LSB,the integral nonlinearity was within 0.5 LSB,and the core power consumption was 8 mW.This analysis method not only ensures the excellent performance of the pipeline ADC,but also,Significantly improved design efficiency.