变工况条件下三相异步电机匝间短路故障诊断
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM407

基金项目:


Diagnosis of interturn short circuit fault in three-phase asynchronous motor under variable operating conditions
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对三相异步电机匝间短路故障在不同工况下数据分布不一致带来的泛化识别准确率下降的问题。提出了一种基 于残差一自注意力网络的迁移学习方法,通过在残差网络中嵌入自注意力机制实现特征强化并利用源域数据进行模型训练, 然后利用迁移学习的微调策略使得模型能更好地适应目标域的特征分布,以此来增加模型在目标域数据中的适应性能力。 此外,通过设计对比实验探究了引入微调训练以及在模型中嵌入自注意力机制对于模型诊断性能的影响。实验结果表明,所 提方法在3种负载条件下迁移的平均准确率为87.5%,相较于一般的残差网络准确率提高了4.5%,同时召回率和 F₁ 分数 分别提高了约10%和6%。

    Abstract:

    The inconsistent distribution of data in different operating conditions poses a challenge in diagnosing inter-turn short circuit faults in three-phase motors.In this paper,a transfer learning method based on residual-self-attention network is proposed.By embedding self-attention mechanism in the residual network,feature enhancement is achieved. The model is trained using source domain data and then fine-tuned using transfer learning strategies to better adapt to the feature distribution of the target domain.Furthermore,a comparative experiment is designed to investigate the impact of fine-tuning training and embedding self-attention mechanism on the diagnostic performance of the model. The experimental results show that the average accuracy of the proposed method for migration under three different load conditions is 87.5%.Compared to the general residual network accuracy,it has increased by 4.5%.At the same time, the recall rate and F₁score have increased by approximately 10%and 6%respectively.

    参考文献
    相似文献
    引证文献
引用本文

李剑君,李 昂,王勇飞,冯治国,牛天宇.变工况条件下三相异步电机匝间短路故障诊断[J].国外电子测量技术,2024,43(3):162-167

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-12
  • 出版日期:
文章二维码